
Introduction to Algorithmic Differentiation

Narayanan/Utke

Argonne National Laboratory
Mathematics and Computer Science Division

12th USNCCM - July 2013 Raleigh NC

outline
� motivation / basics
� simple examples
� tool / algorithmic choices
� sparsity / partial separability
� differentiability / nonsmoothness
� checkpointing / reversal schemes
� practical approaches for big applications
� revolve*
� library interfaces*
� fast higher order derivatives*
� Q&A

Intro to AD - Narayanan/Utke - July/2013 1

why algorithmic differentiation?

given: some numerical model y = f(x) : IRn 7→ IRm

implemented as a (large / volatile) program

wanted: sensitivity analysis, optimization, parameter (state)
estimation, higher-order approximation...

1. don’t pretend we know nothing about the program
(and take finite differences of an oracle)

2. get machine precision derivatives as Jẋ or ȳTJ or ...
(avoid approximation-versus-roundoff problem)

3. the reverse (aka adjoint) mode yields “cheap” gradients

4. if the program is large, so is the adjoint program, and
so is the effort to do it manually ... easy to get wrong but hard to
debug

⇒ use tools to do it automatically!

Intro to AD - Narayanan/Utke - July/2013 2

why algorithmic differentiation?

given: some numerical model y = f(x) : IRn 7→ IRm

implemented as a (large / volatile) program

wanted: sensitivity analysis, optimization, parameter (state)
estimation, higher-order approximation...

1. don’t pretend we know nothing about the program
(and take finite differences of an oracle)

2. get machine precision derivatives as Jẋ or ȳTJ or ...
(avoid approximation-versus-roundoff problem)

3. the reverse (aka adjoint) mode yields “cheap” gradients

4. if the program is large, so is the adjoint program, and
so is the effort to do it manually ... easy to get wrong but hard to
debug

⇒ use tools to do it automatically?

Intro to AD - Narayanan/Utke - July/2013 2

why algorithmic differentiation?

given: some numerical model y = f(x) : IRn 7→ IRm

implemented as a (large / volatile) program

wanted: sensitivity analysis, optimization, parameter (state)
estimation, higher-order approximation...

1. don’t pretend we know nothing about the program
(and take finite differences of an oracle)

2. get machine precision derivatives as Jẋ or ȳTJ or ...
(avoid approximation-versus-roundoff problem)

3. the reverse (aka adjoint) mode yields “cheap” gradients

4. if the program is large, so is the adjoint program, and
so is the effort to do it manually ... easy to get wrong but hard to
debug

⇒ use tools to do it at least semi-automatically!

Intro to AD - Narayanan/Utke - July/2013 2

how does AD compute derivatives?

f : y = sin(a ∗ b) ∗ c : IR3 7→ IR
yields a graph representing the order of computation:

cos(t1)

*

*

a b c

sin

t2

ab

c

t2

t1

� code list→ intermediate values t1 and t2
� each intrinsic v = φ(w, u) has local partials ∂φ

∂w ,
∂φ
∂u

� e.g. sin(t1) yields p1=cos(t1)
� in our example all others are already stored in

variables

t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

What do we do with this?

Intro to AD - Narayanan/Utke - July/2013 3

how does AD compute derivatives?

f : y = sin(a ∗ b) ∗ c : IR3 7→ IR
yields a graph representing the order of computation:

cos(t1)

*

*

a b c

sin

t2

ab

c

t1

t2

� code list→ intermediate values t1 and t2

� each intrinsic v = φ(w, u) has local partials ∂φ
∂w ,

∂φ
∂u

� e.g. sin(t1) yields p1=cos(t1)
� in our example all others are already stored in

variables

t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

What do we do with this?

Intro to AD - Narayanan/Utke - July/2013 3

how does AD compute derivatives?

f : y = sin(a ∗ b) ∗ c : IR3 7→ IR
yields a graph representing the order of computation:

b a

cos(t1)

c

*

*

a b c

t1

t2

t2

sin

� code list→ intermediate values t1 and t2
� each intrinsic v = φ(w, u) has local partials ∂φ

∂w ,
∂φ
∂u

� e.g. sin(t1) yields p1=cos(t1)
� in our example all others are already stored in

variables

t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

What do we do with this?

Intro to AD - Narayanan/Utke - July/2013 3

how does AD compute derivatives?

f : y = sin(a ∗ b) ∗ c : IR3 7→ IR
yields a graph representing the order of computation:

b a

cos(t1)

c

*

*

a b c

t1

t2

t2

sin

� code list→ intermediate values t1 and t2
� each intrinsic v = φ(w, u) has local partials ∂φ

∂w ,
∂φ
∂u

� e.g. sin(t1) yields p1=cos(t1)
� in our example all others are already stored in

variables

t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

What do we do with this?

Intro to AD - Narayanan/Utke - July/2013 3

forward mode with directional derivatives

� associate each variable v with a derivative v̇

� take a point (a0, b0, c0) and a direction (ȧ, ḃ, ċ)

� for each v = φ(w, u) propagate forward in order
v̇ = ∂φ

∂w ẇ + ∂φ
∂u u̇

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_a d_cd_b

� in practice: associate by name [a,d a]

or by address [a%v,a%d]

� interleave propagation computations

t1 = a*b

d t1 = d a*b + d b*a

p1 = cos(t1)

t2 = sin(t1)

d t2 = d t1*p1

y = t2*c

d y = d t2*c + d c*t2
What is in d y ?

Intro to AD - Narayanan/Utke - July/2013 4

forward mode with directional derivatives

� associate each variable v with a derivative v̇

� take a point (a0, b0, c0) and a direction (ȧ, ḃ, ċ)

� for each v = φ(w, u) propagate forward in order
v̇ = ∂φ

∂w ẇ + ∂φ
∂u u̇

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_a d_cd_b

� in practice: associate by name [a,d a]

or by address [a%v,a%d]

� interleave propagation computations

t1 = a*b

d t1 = d a*b + d b*a

p1 = cos(t1)

t2 = sin(t1)

d t2 = d t1*p1

y = t2*c

d y = d t2*c + d c*t2
What is in d y ?

Intro to AD - Narayanan/Utke - July/2013 4

forward mode with directional derivatives

� associate each variable v with a derivative v̇

� take a point (a0, b0, c0) and a direction (ȧ, ḃ, ċ)

� for each v = φ(w, u) propagate forward in order
v̇ = ∂φ

∂w ẇ + ∂φ
∂u u̇

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_a d_cd_b

� in practice: associate by name [a,d a]

or by address [a%v,a%d]

� interleave propagation computations

t1 = a*b

d t1 = d a*b + d b*a

p1 = cos(t1)

t2 = sin(t1)

d t2 = d t1*p1

y = t2*c

d y = d t2*c + d c*t2
What is in d y ?

Intro to AD - Narayanan/Utke - July/2013 4

forward mode with directional derivatives

� associate each variable v with a derivative v̇

� take a point (a0, b0, c0) and a direction (ȧ, ḃ, ċ)

� for each v = φ(w, u) propagate forward in order
v̇ = ∂φ

∂w ẇ + ∂φ
∂u u̇

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_a d_cd_b

� in practice: associate by name [a,d a]

or by address [a%v,a%d]

� interleave propagation computations

t1 = a*b

d t1 = d a*b + d b*a

p1 = cos(t1)

t2 = sin(t1)

d t2 = d t1*p1

y = t2*c

d y = d t2*c + d c*t2

What is in d y ?

Intro to AD - Narayanan/Utke - July/2013 4

forward mode with directional derivatives

� associate each variable v with a derivative v̇

� take a point (a0, b0, c0) and a direction (ȧ, ḃ, ċ)

� for each v = φ(w, u) propagate forward in order
v̇ = ∂φ

∂w ẇ + ∂φ
∂u u̇

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_a d_cd_b

� in practice: associate by name [a,d a]

or by address [a%v,a%d]

� interleave propagation computations

t1 = a*b

d t1 = d a*b + d b*a

p1 = cos(t1)

t2 = sin(t1)

d t2 = d t1*p1

y = t2*c

d y = d t2*c + d c*t2
What is in d y ?

Intro to AD - Narayanan/Utke - July/2013 4

d y contains a projection

� ẏ = Jẋ computed at x0

� for example for (ȧ, ḃ, ċ) = (1, 0, 0)

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_a d_b d_c

� yields the first element of the gradient

� all gradient elements cost O(n) function
evaluations

This as a source transformation...

Intro to AD - Narayanan/Utke - July/2013 5

d y contains a projection

� ẏ = Jẋ computed at x0

� for example for (ȧ, ḃ, ċ) = (1, 0, 0)

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_a d_b d_c

� yields the first element of the gradient

� all gradient elements cost O(n) function
evaluations

This as a source transformation...

Intro to AD - Narayanan/Utke - July/2013 5

d y contains a projection

� ẏ = Jẋ computed at x0

� for example for (ȧ, ḃ, ċ) = (1, 0, 0)

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_a d_b d_c

� yields the first element of the gradient

� all gradient elements cost O(n) function
evaluations

This as a source transformation...

Intro to AD - Narayanan/Utke - July/2013 5

applications

for instance

� ocean/atmosphere state estimation & uncertainty
quantification, oil reservoir modeling

� computational chemical engineering

� CFD

� beam physics

� mechanical engineering

use

� gradients

� Jacobian projections

� Hessian projections

� higher order derivatives
(full or partial tensors, univariate Taylor series)

How do we get the cheap gradients? ... later

Intro to AD - Narayanan/Utke - July/2013 6

applications

for instance

� ocean/atmosphere state estimation & uncertainty
quantification, oil reservoir modeling

� computational chemical engineering

� CFD

� beam physics

� mechanical engineering

use

� gradients

� Jacobian projections

� Hessian projections

� higher order derivatives
(full or partial tensors, univariate Taylor series)

How do we get the cheap gradients? ... later

Intro to AD - Narayanan/Utke - July/2013 6

sidebar: simple overloaded operators for a*b

in C++:

struct Afloat{float v; float d;};

Afloat operator ∗(Afloat a, Afloat b) {
Afloat r; int i;
r.v=a.v∗b.v; // value
r.d=a.d∗b.v+a.v∗b.d; // derivative
return r;
};

// other argument combinations

in Fortran:

module ATypes
public :: Areal
type Areal

sequence
real :: v,d

end type
end module ATypes

module Amult
use ATypes
interface operator(∗)

module procedure multArealAreal
! other argument combinations

end interface
contains

function multArealAreal(a,b) result(r)
type(Areal),intent(in)::a,b
type(Areal)::r
r%v=a%v∗b%v ! value
r%d=a%d∗b%v+a%v∗b%v ! derivative

end function multArealAreal
end module Amult

Operator Overloading ⇒
A simple, relatively unintrusive way to augment semantics via a
type change!

Intro to AD - Narayanan/Utke - July/2013 7

sidebar: simple overloaded operators for a*b

in C++:

struct Afloat{float v; float d;};

Afloat operator ∗(Afloat a, Afloat b) {
Afloat r; int i;
r.v=a.v∗b.v; // value
r.d=a.d∗b.v+a.v∗b.d; // derivative
return r;
};

// other argument combinations

in Fortran:

module ATypes
public :: Areal
type Areal

sequence
real :: v,d

end type
end module ATypes

module Amult
use ATypes
interface operator(∗)

module procedure multArealAreal
! other argument combinations

end interface
contains

function multArealAreal(a,b) result(r)
type(Areal),intent(in)::a,b
type(Areal)::r
r%v=a%v∗b%v ! value
r%d=a%d∗b%v+a%v∗b%v ! derivative

end function multArealAreal
end module Amult

Operator Overloading ⇒
A simple, relatively unintrusive way to augment semantics via a
type change!

Intro to AD - Narayanan/Utke - July/2013 7

Rapsodia - overview

� similar code in the overloaded operators - use a code
generator - Rapsodia

� main motivation is higher-order (later)

� generates C++/Fortran overloading libraries

� some support code

� open source see www.mcs.anl.gov/Rapsodia/

� work flow:

� generate library
� type change the original source code to an active type
� write driver logic to initialize/retrieve derivatives
� compile/link

� look at an example...

Intro to AD - Narayanan/Utke - July/2013 8

www.mcs.anl.gov/Rapsodia/

Rapsodia - overview

� similar code in the overloaded operators - use a code
generator - Rapsodia

� main motivation is higher-order (later)

� generates C++/Fortran overloading libraries

� some support code

� open source see www.mcs.anl.gov/Rapsodia/

� work flow:

� generate library
� type change the original source code to an active type
� write driver logic to initialize/retrieve derivatives
� compile/link

� look at an example...

Intro to AD - Narayanan/Utke - July/2013 8

www.mcs.anl.gov/Rapsodia/

Rapsodia - overview

� similar code in the overloaded operators - use a code
generator - Rapsodia

� main motivation is higher-order (later)

� generates C++/Fortran overloading libraries

� some support code

� open source see www.mcs.anl.gov/Rapsodia/

� work flow:
� generate library

� type change the original source code to an active type
� write driver logic to initialize/retrieve derivatives
� compile/link

� look at an example...

Intro to AD - Narayanan/Utke - July/2013 8

www.mcs.anl.gov/Rapsodia/

Rapsodia - overview

� similar code in the overloaded operators - use a code
generator - Rapsodia

� main motivation is higher-order (later)

� generates C++/Fortran overloading libraries

� some support code

� open source see www.mcs.anl.gov/Rapsodia/

� work flow:
� generate library
� type change the original source code to an active type

� write driver logic to initialize/retrieve derivatives
� compile/link

� look at an example...

Intro to AD - Narayanan/Utke - July/2013 8

www.mcs.anl.gov/Rapsodia/

Rapsodia - overview

� similar code in the overloaded operators - use a code
generator - Rapsodia

� main motivation is higher-order (later)

� generates C++/Fortran overloading libraries

� some support code

� open source see www.mcs.anl.gov/Rapsodia/

� work flow:
� generate library
� type change the original source code to an active type
� write driver logic to initialize/retrieve derivatives

� compile/link

� look at an example...

Intro to AD - Narayanan/Utke - July/2013 8

www.mcs.anl.gov/Rapsodia/

Rapsodia - overview

� similar code in the overloaded operators - use a code
generator - Rapsodia

� main motivation is higher-order (later)

� generates C++/Fortran overloading libraries

� some support code

� open source see www.mcs.anl.gov/Rapsodia/

� work flow:
� generate library
� type change the original source code to an active type
� write driver logic to initialize/retrieve derivatives
� compile/link

� look at an example...

Intro to AD - Narayanan/Utke - July/2013 8

www.mcs.anl.gov/Rapsodia/

Rapsodia - overview

� similar code in the overloaded operators - use a code
generator - Rapsodia

� main motivation is higher-order (later)

� generates C++/Fortran overloading libraries

� some support code

� open source see www.mcs.anl.gov/Rapsodia/

� work flow:
� generate library
� type change the original source code to an active type
� write driver logic to initialize/retrieve derivatives
� compile/link

� look at an example...

Intro to AD - Narayanan/Utke - July/2013 8

www.mcs.anl.gov/Rapsodia/

Rapsodia - simple example

� get into the VM

� cd ~/Rapdsodia

� export RAPSODIAROOT=$PWD

� cd ../RapsodiaExamples/CppOneMinute/

� look at
� original driver (driverO.cpp)
� augmented driver (driver.cpp)
� Makefile

� make clean

� make

Intro to AD - Narayanan/Utke - July/2013 9

ADIC - overview and simple example

pass to Krishna ...

Intro to AD - Narayanan/Utke - July/2013 10

reverse mode with adjoints

� same association model

� take a point (a0, b0, c0), compute y, pick a weight ȳ

� for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w v̄; ū+ = ∂φ
∂u v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_y backward propagation code appended:
t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

d c = t2*d y

d t2 = c*d y

d y = 0

d t1 = p1*d t2

d b = a*d t1

d a = b*d t1 What is in (d a,d b,d c)?

Intro to AD - Narayanan/Utke - July/2013 11

reverse mode with adjoints

� same association model

� take a point (a0, b0, c0), compute y, pick a weight ȳ

� for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w v̄; ū+ = ∂φ
∂u v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_y backward propagation code appended:
t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

d c = t2*d y

d t2 = c*d y

d y = 0

d t1 = p1*d t2

d b = a*d t1

d a = b*d t1 What is in (d a,d b,d c)?

Intro to AD - Narayanan/Utke - July/2013 11

reverse mode with adjoints

� same association model

� take a point (a0, b0, c0), compute y, pick a weight ȳ

� for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w v̄; ū+ = ∂φ
∂u v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_y backward propagation code appended:
t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

d c = t2*d y

d t2 = c*d y

d y = 0

d t1 = p1*d t2

d b = a*d t1

d a = b*d t1 What is in (d a,d b,d c)?

Intro to AD - Narayanan/Utke - July/2013 11

reverse mode with adjoints

� same association model

� take a point (a0, b0, c0), compute y, pick a weight ȳ

� for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w v̄; ū+ = ∂φ
∂u v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_y backward propagation code appended:
t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

d c = t2*d y

d t2 = c*d y

d y = 0

d t1 = p1*d t2

d b = a*d t1

d a = b*d t1 What is in (d a,d b,d c)?

Intro to AD - Narayanan/Utke - July/2013 11

reverse mode with adjoints

� same association model

� take a point (a0, b0, c0), compute y, pick a weight ȳ

� for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w v̄; ū+ = ∂φ
∂u v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

backward propagation code appended:
t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

d c = t2*d y

d t2 = c*d y

d y = 0

d t1 = p1*d t2

d b = a*d t1

d a = b*d t1 What is in (d a,d b,d c)?

Intro to AD - Narayanan/Utke - July/2013 11

reverse mode with adjoints

� same association model

� take a point (a0, b0, c0), compute y, pick a weight ȳ

� for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w v̄; ū+ = ∂φ
∂u v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

backward propagation code appended:
t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

d c = t2*d y

d t2 = c*d y

d y = 0

d t1 = p1*d t2

d b = a*d t1

d a = b*d t1 What is in (d a,d b,d c)?

Intro to AD - Narayanan/Utke - July/2013 11

reverse mode with adjoints

� same association model

� take a point (a0, b0, c0), compute y, pick a weight ȳ

� for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w v̄; ū+ = ∂φ
∂u v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

backward propagation code appended:
t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

d c = t2*d y

d t2 = c*d y

d y = 0

d t1 = p1*d t2

d b = a*d t1

d a = b*d t1

What is in (d a,d b,d c)?

Intro to AD - Narayanan/Utke - July/2013 11

reverse mode with adjoints

� same association model

� take a point (a0, b0, c0), compute y, pick a weight ȳ

� for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w v̄; ū+ = ∂φ
∂u v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

backward propagation code appended:
t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

d c = t2*d y

d t2 = c*d y

d y = 0

d t1 = p1*d t2

d b = a*d t1

d a = b*d t1 What is in (d a,d b,d c)?

Intro to AD - Narayanan/Utke - July/2013 11

(d a,d b,d c) contains a projection

� x̄ = ȳTJ computed at x0

� for example for ȳ = 1 we have [ā, b̄, c̄] = ∇f

b a

c

*

*

a b c

t1

t2

t2

sin

p1

� all gradient elements cost O(1) function
evaluations

� but consider when p1 is computed and when it is
used

� storage requirements grow with the length of the
computation jump to CP

� typically mitigated by recomputation from
checkpoints

Reverse mode with Adol-C.

Intro to AD - Narayanan/Utke - July/2013 12

(d a,d b,d c) contains a projection

� x̄ = ȳTJ computed at x0

� for example for ȳ = 1 we have [ā, b̄, c̄] = ∇f

b a

c

*

*

a b c

t1

t2

t2

sin

p1

� all gradient elements cost O(1) function
evaluations

� but consider when p1 is computed and when it is
used

� storage requirements grow with the length of the
computation jump to CP

� typically mitigated by recomputation from
checkpoints

Reverse mode with Adol-C.

Intro to AD - Narayanan/Utke - July/2013 12

(d a,d b,d c) contains a projection

� x̄ = ȳTJ computed at x0

� for example for ȳ = 1 we have [ā, b̄, c̄] = ∇f

b a

c

*

*

a b c

t1

t2

t2

sin

p1

� all gradient elements cost O(1) function
evaluations

� but consider when p1 is computed and when it is
used

� storage requirements grow with the length of the
computation jump to CP

� typically mitigated by recomputation from
checkpoints

Reverse mode with Adol-C.

Intro to AD - Narayanan/Utke - July/2013 12

(d a,d b,d c) contains a projection

� x̄ = ȳTJ computed at x0

� for example for ȳ = 1 we have [ā, b̄, c̄] = ∇f

b a

c

*

*

a b c

t1

t2

t2

sin

p1

st
o

ra
g

e

� all gradient elements cost O(1) function
evaluations

� but consider when p1 is computed and when it is
used

� storage requirements grow with the length of the
computation jump to CP

� typically mitigated by recomputation from
checkpoints

Reverse mode with Adol-C.

Intro to AD - Narayanan/Utke - July/2013 12

(d a,d b,d c) contains a projection

� x̄ = ȳTJ computed at x0

� for example for ȳ = 1 we have [ā, b̄, c̄] = ∇f

b a

c

*

*

a b c

t1

t2

t2

sin

p1

st
o

ra
g

e

� all gradient elements cost O(1) function
evaluations

� but consider when p1 is computed and when it is
used

� storage requirements grow with the length of the
computation jump to CP

� typically mitigated by recomputation from
checkpoints

Reverse mode with Adol-C.

Intro to AD - Narayanan/Utke - July/2013 12

Adol-C - overview

� operator overloading library for C++

� open source

� see www.coin-or.org/projects/ADOL-C.xml

� overloaded operators create an execution trace, called the tape

� tape interpreters run forward/reverse on the tape
� work flow:

� configure/compile/install Adol-C headers/library
� type change the original source code to an active type
� write driver logic to initialize/retrieve derivatives
� compile/link

� look at an example ...

Intro to AD - Narayanan/Utke - July/2013 13

www.coin-or.org/projects/ADOL-C.xml

Adol-C - overview

� operator overloading library for C++

� open source

� see www.coin-or.org/projects/ADOL-C.xml

� overloaded operators create an execution trace, called the tape

� tape interpreters run forward/reverse on the tape

� work flow:

� configure/compile/install Adol-C headers/library
� type change the original source code to an active type
� write driver logic to initialize/retrieve derivatives
� compile/link

� look at an example ...

Intro to AD - Narayanan/Utke - July/2013 13

www.coin-or.org/projects/ADOL-C.xml

Adol-C - overview

� operator overloading library for C++

� open source

� see www.coin-or.org/projects/ADOL-C.xml

� overloaded operators create an execution trace, called the tape

� tape interpreters run forward/reverse on the tape
� work flow:

� configure/compile/install Adol-C headers/library

� type change the original source code to an active type
� write driver logic to initialize/retrieve derivatives
� compile/link

� look at an example ...

Intro to AD - Narayanan/Utke - July/2013 13

www.coin-or.org/projects/ADOL-C.xml

Adol-C - overview

� operator overloading library for C++

� open source

� see www.coin-or.org/projects/ADOL-C.xml

� overloaded operators create an execution trace, called the tape

� tape interpreters run forward/reverse on the tape
� work flow:

� configure/compile/install Adol-C headers/library
� type change the original source code to an active type

� write driver logic to initialize/retrieve derivatives
� compile/link

� look at an example ...

Intro to AD - Narayanan/Utke - July/2013 13

www.coin-or.org/projects/ADOL-C.xml

Adol-C - overview

� operator overloading library for C++

� open source

� see www.coin-or.org/projects/ADOL-C.xml

� overloaded operators create an execution trace, called the tape

� tape interpreters run forward/reverse on the tape
� work flow:

� configure/compile/install Adol-C headers/library
� type change the original source code to an active type
� write driver logic to initialize/retrieve derivatives

� compile/link

� look at an example ...

Intro to AD - Narayanan/Utke - July/2013 13

www.coin-or.org/projects/ADOL-C.xml

Adol-C - overview

� operator overloading library for C++

� open source

� see www.coin-or.org/projects/ADOL-C.xml

� overloaded operators create an execution trace, called the tape

� tape interpreters run forward/reverse on the tape
� work flow:

� configure/compile/install Adol-C headers/library
� type change the original source code to an active type
� write driver logic to initialize/retrieve derivatives
� compile/link

� look at an example ...

Intro to AD - Narayanan/Utke - July/2013 13

www.coin-or.org/projects/ADOL-C.xml

Adol-C - overview

� operator overloading library for C++

� open source

� see www.coin-or.org/projects/ADOL-C.xml

� overloaded operators create an execution trace, called the tape

� tape interpreters run forward/reverse on the tape
� work flow:

� configure/compile/install Adol-C headers/library
� type change the original source code to an active type
� write driver logic to initialize/retrieve derivatives
� compile/link

� look at an example ...

Intro to AD - Narayanan/Utke - July/2013 13

www.coin-or.org/projects/ADOL-C.xml

Adol-C - example I

Speelpenning example y =
∏
i
xi evaluated at xi = i+1

i+2

#include "adolc.h"

a

double *x = new

a

double[n];

a

double t = 1;

double y;

trace on(1);

for(i=0; i<n; i++) {

x[i]

<<

= (i+1.0)/(i+2.0);

t *= x[i]; }

y = t;

trace off();

delete[] x;

use a driver :
gradient(tag,

n,

x[n],

g[n])

Intro to AD - Narayanan/Utke - July/2013 14

Adol-C - example I

Speelpenning example y =
∏
i
xi evaluated at xi = i+1

i+2

#include "adolc.h"

adouble *x = new adouble[n];

adouble t = 1;

double y;

trace on(1);

for(i=0; i<n; i++) {

x[i] <<= (i+1.0)/(i+2.0);

t *= x[i]; }

t >>= y;

trace off();

delete[] x;

use a driver :
gradient(tag,

n,

x[n],

g[n])

Intro to AD - Narayanan/Utke - July/2013 14

Adol-C - example I

Speelpenning example y =
∏
i
xi evaluated at xi = i+1

i+2

#include "adolc.h"

adouble *x = new adouble[n];

adouble t = 1;

double y;

trace on(1);

for(i=0; i<n; i++) {

x[i] <<= (i+1.0)/(i+2.0);

t *= x[i]; }

t >>= y;

trace off();

delete[] x;

use a driver :
gradient(tag,

n,

x[n],

g[n])

Intro to AD - Narayanan/Utke - July/2013 14

Adol-C - example II

� get into the VM

� cd ~/adol-c/ADOL-C/examples/

� look at speelpenning.cpp

� run it by invoking
./speelpenning

� look at the implementation of gradient in
~/adol-c/ADOL-C/src/drivers/drivers.c

Intro to AD - Narayanan/Utke - July/2013 15

sidebar: Adol-C drivers

running the example produces a
tape;
driver logic interprets the tape;
xp can be some point in IRn;

double∗ g = new double[n];

gradient(1,n,xp,g); // gradient

double∗∗ H = (double∗∗)malloc(n∗
sizeof(double∗));

for(i=0; i<n; i++)
H[i] = (double∗)malloc((i+1)∗

sizeof(double));

hessian(1,n,xp,H); // Hessian

drivers use tag as tape identifier;
gradient(tag,n,xp,g)

and similar for:
hessian(tag,n,xp,H)

need only H’s lower triangle

� various drivers use
combinations of forward
and reverse sweeps

� “tapeless” forward with
slightly different usage
patterns

Intro to AD - Narayanan/Utke - July/2013 16

OpenAD - overview

� www.mcs.anl.gov/OpenAD

� forward and reverse

� source transformation

� modular design

� large problems

� language independent transformation

� researching combinatorial problems

� current Fortran front-end Open64
(Open64/SL branch from Rice U)

� migration to Rose (already used for
C/C++ with EDG)

� uses association by address as opposed
to association by name

Open

Analysis

whirl

XAIF

xerces

boost

Angel

Rosefront − ends

XAIF

(AD source transformation)

xaifBooster

FortTk

Open

Open64

AD/ RoseTo

Fortran pipeline:

whirl2xaif xaif2whirl

F’

whirlF’

xaifxaifF

Fwhirl

F

xaifBooster

F’

OpenAnalysis

Open64

Intro to AD - Narayanan/Utke - July/2013 17

www.mcs.anl.gov/OpenAD

OpenAD - example I

� cd ~/OpenAD

� . ./setenv.sh

� cd Examples/OneMinuteReverse/; make clean; make

� look at head.f90 vs head.prepped.f90

original code augmented with directives

subroutine head(x,y)
double precision,intent(in) :: x
double precision,intent(out) :: y

!$openad INDEPENDENT(x)
y=sin(x∗x)

!$openad DEPENDENT(y)
end subroutine

driver logic

program driver
use OAD active
implicit none
external head
type(active):: x, y
x%v=.5D0
x%d=1.0
call head(x,y)
print ∗, ”F(1,1)=”,y%d

end program driver

source-transformed code

SUBROUTINE head(X, Y)
use w2f types
use OAD active
IMPLICIT NONE
REAL(w2f 8) OpenAD Symbol 0
!...
REAL(w2f 8) OpenAD Symbol 5
type(active) :: X
INTENT(IN) X
type(active) :: Y
INTENT(OUT) Y
OpenAD Symbol 0 = (X%v∗X%v)
Y%v = SIN(OpenAD Symbol 0)
OpenAD Symbol 2 = X%v
OpenAD Symbol 3 = X%v
OpenAD Symbol 1 = COS(OpenAD Symbol 0)
OpenAD Symbol 5 = ((OpenAD Symbol 3 +

OpenAD Symbol 2) ∗ OpenAD Symbol 1)
CALL sax(OpenAD Symbol 5,X,Y)
RETURN
END SUBROUTINE

Intro to AD - Narayanan/Utke - July/2013 18

OpenAD - example II: simple scripted pipeline

� look at Makefile

� openad is a Python pipeline wrapper for simple(!) settings

� invoke openad -h to see a usage message

� invoke make

� run ./driver

� look at head.prepped.pre.xb.x2w.w2f.post.f90 ...

or rather not!

� individual make steps - invoke make driverE

� see the rules in MakeExplRules.inc

Intro to AD - Narayanan/Utke - July/2013 19

OpenAD - example II: simple scripted pipeline

� look at Makefile

� openad is a Python pipeline wrapper for simple(!) settings

� invoke openad -h to see a usage message

� invoke make

� run ./driver

� look at head.prepped.pre.xb.x2w.w2f.post.f90 ...

or rather not!

� individual make steps - invoke make driverE

� see the rules in MakeExplRules.inc

Intro to AD - Narayanan/Utke - July/2013 19

OpenAD - example II: simple scripted pipeline

� look at Makefile

� openad is a Python pipeline wrapper for simple(!) settings

� invoke openad -h to see a usage message

� invoke make

� run ./driver

� look at head.prepped.pre.xb.x2w.w2f.post.f90 ...

or rather not!

� individual make steps - invoke make driverE

� see the rules in MakeExplRules.inc

Intro to AD - Narayanan/Utke - July/2013 19

OpenAD - example II: simple scripted pipeline

� look at Makefile

� openad is a Python pipeline wrapper for simple(!) settings

� invoke openad -h to see a usage message

� invoke make

� run ./driver

� look at head.prepped.pre.xb.x2w.w2f.post.f90 ...

or rather not!

� individual make steps - invoke make driverE

� see the rules in MakeExplRules.inc

Intro to AD - Narayanan/Utke - July/2013 19

OpenAD - example II: simple scripted pipeline

� look at Makefile

� openad is a Python pipeline wrapper for simple(!) settings

� invoke openad -h to see a usage message

� invoke make

� run ./driver

� look at head.prepped.pre.xb.x2w.w2f.post.f90 ...

or rather not!

� individual make steps - invoke make driverE

� see the rules in MakeExplRules.inc

Intro to AD - Narayanan/Utke - July/2013 19

OpenAD - example II: simple scripted pipeline

� look at Makefile

� openad is a Python pipeline wrapper for simple(!) settings

� invoke openad -h to see a usage message

� invoke make

� run ./driver

� look at head.prepped.pre.xb.x2w.w2f.post.f90 ...
or rather not!

� individual make steps - invoke make driverE

� see the rules in MakeExplRules.inc

Intro to AD - Narayanan/Utke - July/2013 19

OpenAD - example II: simple scripted pipeline

� look at Makefile

� openad is a Python pipeline wrapper for simple(!) settings

� invoke openad -h to see a usage message

� invoke make

� run ./driver

� look at head.prepped.pre.xb.x2w.w2f.post.f90 ...
or rather not!

� individual make steps - invoke make driverE

� see the rules in MakeExplRules.inc

Intro to AD - Narayanan/Utke - July/2013 19

Source Transformation vs. Operator Overloading

� complicated implementation of tools

� especially for reverse mode

� full front end, back end, analysis

� efficiency gains from
� compile time optimizations
� activity analysis
� explicit control flow reversal for reverse

mode

� source transformation based type change
& overloaded operators appropriate for
higher-order derivatives.

� benefits from external information

� efficiency depends on analysis accuracy

� simple tool implementation

� reverse mode (generating and reinterpret-
ing an execution trace → inefficient)

� implemented as some library

� impact on efficiency:
� library implementation (narrow scope)
� compiler inlining capabilities (for low

order)
� use external information (sparsity etc.)
� can do only runtime optimizations

� manual type change for operator over-

loading
� complicated for formatted I/O, alloca-

tion
� need matching signatures in Fortran
� helped by use of templates

For higher-order derivatives combining source transformation based
type change with overloaded operators is appropriate.

Intro to AD - Narayanan/Utke - July/2013 20

Source Transformation vs. Operator Overloading

� complicated implementation of tools

� especially for reverse mode

� full front end, back end, analysis

� efficiency gains from
� compile time optimizations
� activity analysis
� explicit control flow reversal for reverse

mode

� source transformation based type change
& overloaded operators appropriate for
higher-order derivatives.

� benefits from external information

� efficiency depends on analysis accuracy

� simple tool implementation

� reverse mode (generating and reinterpret-
ing an execution trace → inefficient)

� implemented as some library

� impact on efficiency:
� library implementation (narrow scope)
� compiler inlining capabilities (for low

order)
� use external information (sparsity etc.)
� can do only runtime optimizations

� manual type change for operator over-

loading
� complicated for formatted I/O, alloca-

tion
� need matching signatures in Fortran
� helped by use of templates

For higher-order derivatives combining source transformation based
type change with overloaded operators is appropriate.

Intro to AD - Narayanan/Utke - July/2013 20

what to pick...

i.e. matching application requirements with AD tools and
techniques

the major advantages of AD are ... no need to repeat again

� knowing AD tool “internal” algorithms is of interest to the
user
(compare to compiler vector optimization)

� except for simple models and low computational complexity
→ can get away with “something”

� complicated models → worry about tool applicability

� high computational complexity → worry about efficiency of
derivative computations

� tool availability (e.g. source transformation for C++ ?)

Intro to AD - Narayanan/Utke - July/2013 21

Forward vs. Reverse

� simplest rule: given y = f(x) : IRn 7→ IRm use reverse if
n� m (gradient)
� what if n ≈ m and large

� want only projections, e.g. Jẋ
� sparsity (e.g. of the Jacobian)
� partial separability (e.g. f(x) =

∑
(fi(xi)), xi ∈ Di b D 3 x)

� intermediate interfaces of different size

� the above may make forward mode feasible (projection ȳTJ
requires reverse)

� higher order tensors (practically feasible for small n) →
forward mode (reverse mode saves factor n in effort only once)

� this determines overall propagation direction, not necessarily
the local preaccumulation (combinatorial problem)

Intro to AD - Narayanan/Utke - July/2013 22

sparsity, partial separability,...

pass to Krishna ...

Intro to AD - Narayanan/Utke - July/2013 23

is the model f smooth?
examples:

� y=abs(x); gives a kink

� y=(x>0)?3*x:2*x+2; gives a discontinuity

� y=floor(x); same

� Y=REAL(Z); what about IMAG(Z)

� if (a == 1.0)
y = b;

else if (a == 0.0) then
y = 0;

else
y = a∗b;

intended: ẏ=a*ḃ+b*ȧ

Intro to AD - Narayanan/Utke - July/2013 24

is the model f smooth?
examples:

� y=abs(x); gives a kink

� y=(x>0)?3*x:2*x+2; gives a discontinuity

� y=floor(x); same

� Y=REAL(Z); what about IMAG(Z)

� if (a == 1.0)
y = b;

else if (a == 0.0) then
y = 0;

else
y = a∗b;

intended: ẏ=a*ḃ+b*ȧ

Intro to AD - Narayanan/Utke - July/2013 24

is the model f smooth?
examples:

� y=abs(x); gives a kink

� y=(x>0)?3*x:2*x+2; gives a discontinuity

� y=floor(x); same

� Y=REAL(Z); what about IMAG(Z)

� if (a == 1.0)
y = b;

else if (a == 0.0) then
y = 0;

else
y = a∗b;

intended: ẏ=a*ḃ+b*ȧ

Intro to AD - Narayanan/Utke - July/2013 24

is the model f smooth?
examples:

� y=abs(x); gives a kink

� y=(x>0)?3*x:2*x+2; gives a discontinuity

� y=floor(x); same

� Y=REAL(Z); what about IMAG(Z)

� if (a == 1.0)
y = b;

else if (a == 0.0) then
y = 0;

else
y = a∗b;

intended: ẏ=a*ḃ+b*ȧ

Intro to AD - Narayanan/Utke - July/2013 24

is the model f smooth?
examples:

� y=abs(x); gives a kink

� y=(x>0)?3*x:2*x+2; gives a discontinuity

� y=floor(x); same

� Y=REAL(Z); what about IMAG(Z)

� if (a == 1.0)
y = b;

else if (a == 0.0) then
y = 0;

else
y = a∗b;

intended: ẏ=a*ḃ+b*ȧ

Intro to AD - Narayanan/Utke - July/2013 24

is the model f smooth?
examples:

� y=abs(x); gives a kink

� y=(x>0)?3*x:2*x+2; gives a discontinuity

� y=floor(x); same

� Y=REAL(Z); what about IMAG(Z)

� if (a == 1.0)
y = b;

else if (a == 0.0) then
y = 0;

else
y = a∗b;

intended: ẏ=a*ḃ+b*ȧ

y=sqrt(a**4 + b**4);

AD does not perform
algebraic simplification,
i.e. for a,b → 0 it does

(d
√
t

dt)
t→+0

= +∞.

Intro to AD - Narayanan/Utke - July/2013 24

is the model f smooth?
examples:

� y=abs(x); gives a kink

� y=(x>0)?3*x:2*x+2; gives a discontinuity

� y=floor(x); same

� Y=REAL(Z); what about IMAG(Z)

� if (a == 1.0)
y = b;

else if (a == 0.0) then
y = 0;

else
y = a∗b;

intended: ẏ=a*ḃ+b*ȧ

y=sqrt(a**4 + b**4);

AD does not perform
algebraic simplification,
i.e. for a,b → 0 it does

(d
√
t

dt)
t→+0

= +∞.

AD computes derivatives of programs(!)

know your application e.g. fix point iteration, self adjoint, step size computation, convergence

criteria—
Intro to AD - Narayanan/Utke - July/2013 24

sidebar: differentiability

-1

-0.5

 0

 0.5

-1

-0.5

 0

 0.5

 0
 0.2
 0.4
 0.6
 0.8

 1

abs(x**2 -sin(abs(y)))

piecewise differentiable function:
|x2 − sin(|y|)|
is (locally) Lipschitz continuous;
almost everywhere differentiable
(except on the 6 critical paths)

� Gâteaux: if ∃ df(x, ẋ) = lim
τ→0

f(x+τẋ)−f(x)
τ for all directions ẋ

� Bouligand: Lipschitz continuous and Gâteaux

� Fréchet: df(., ẋ) continuous for every fixed ẋ (not generally the case)

� in practice: often benign behavior, directional derivative exists and
is an element of the generalized gradient.

Intro to AD - Narayanan/Utke - July/2013 25

non-smooth models

� typically caused by:
� the examples mentioned before
� intrinsics: max, ceil, sqrt, tan,... (domain boundaries!)
� branches if (x<2.5) y=f1(x); else y=f2(x);
� approximation methods (e.g. partially converged solves)

� may be observed as: oscillating derivatives (may be glossed
over by FD); derivatives growing out of bounds; INF/NaN
proliferation

time

bT

delta

T

a

f

aCrit

1:updF1

f2 f1

2:updF2

3:updF1

4:updF2

Intro to AD - Narayanan/Utke - July/2013 26

non-smooth models AD vs FD
have: complicated AD source transformation
want: consistency check with FD
get: no match

� blame the AD tool - or -

� compare forward to reverse
� compare to other AD tool

� blame code: model’s built-in numerical approximations,
external optimization scheme, inherent in the physics,
inconsistent initial state, initial state at domain boundary?

→ fixes needed by model/application expert

higher-order handling of nonsmoothness: intervall inclusions - beam
physics(COSY), distance approximation - explicit g-stop facility for
ODEs, DAEs (ATOM-FT)
what to do about first order:

� Adol-C: tape verification and intrinsic handling

� OpenAD: (comparative tracing)

Intro to AD - Narayanan/Utke - July/2013 27

non-smooth models AD vs FD
have: complicated AD source transformation
want: consistency check with FD
get: no match

� blame the AD tool - or -

� compare forward to reverse
� compare to other AD tool

� blame code: model’s built-in numerical approximations,
external optimization scheme, inherent in the physics,
inconsistent initial state, initial state at domain boundary?

→ fixes needed by model/application expert

higher-order handling of nonsmoothness: intervall inclusions - beam
physics(COSY), distance approximation - explicit g-stop facility for
ODEs, DAEs (ATOM-FT)
what to do about first order:

� Adol-C: tape verification and intrinsic handling

� OpenAD: (comparative tracing)

Intro to AD - Narayanan/Utke - July/2013 27

non-smooth models AD vs FD
have: complicated AD source transformation
want: consistency check with FD
get: no match

� blame the AD tool - or -
� compare forward to reverse
� compare to other AD tool

� blame code: model’s built-in numerical approximations,
external optimization scheme, inherent in the physics,
inconsistent initial state, initial state at domain boundary?

→ fixes needed by model/application expert

higher-order handling of nonsmoothness: intervall inclusions - beam
physics(COSY), distance approximation - explicit g-stop facility for
ODEs, DAEs (ATOM-FT)
what to do about first order:

� Adol-C: tape verification and intrinsic handling

� OpenAD: (comparative tracing)

Intro to AD - Narayanan/Utke - July/2013 27

non-smooth models AD vs FD
have: complicated AD source transformation
want: consistency check with FD
get: no match

� blame the AD tool - or -
� compare forward to reverse
� compare to other AD tool

� blame code: model’s built-in numerical approximations,
external optimization scheme, inherent in the physics,
inconsistent initial state, initial state at domain boundary?

→ fixes needed by model/application expert

higher-order handling of nonsmoothness: intervall inclusions - beam
physics(COSY), distance approximation - explicit g-stop facility for
ODEs, DAEs (ATOM-FT)
what to do about first order:

� Adol-C: tape verification and intrinsic handling

� OpenAD: (comparative tracing)

Intro to AD - Narayanan/Utke - July/2013 27

non-smooth models AD vs FD
have: complicated AD source transformation
want: consistency check with FD
get: no match

� blame the AD tool - or -
� compare forward to reverse
� compare to other AD tool

� blame code: model’s built-in numerical approximations,
external optimization scheme, inherent in the physics,
inconsistent initial state, initial state at domain boundary?
→ fixes needed by model/application expert

higher-order handling of nonsmoothness: intervall inclusions - beam
physics(COSY), distance approximation - explicit g-stop facility for
ODEs, DAEs (ATOM-FT)
what to do about first order:

� Adol-C: tape verification and intrinsic handling

� OpenAD: (comparative tracing)

Intro to AD - Narayanan/Utke - July/2013 27

non-smooth models AD vs FD
have: complicated AD source transformation
want: consistency check with FD
get: no match

� blame the AD tool - or -
� compare forward to reverse
� compare to other AD tool

� blame code: model’s built-in numerical approximations,
external optimization scheme, inherent in the physics,
inconsistent initial state, initial state at domain boundary?
→ fixes needed by model/application expert

higher-order handling of nonsmoothness: intervall inclusions - beam
physics(COSY), distance approximation - explicit g-stop facility for
ODEs, DAEs (ATOM-FT)

what to do about first order:

� Adol-C: tape verification and intrinsic handling

� OpenAD: (comparative tracing)

Intro to AD - Narayanan/Utke - July/2013 27

non-smooth models AD vs FD
have: complicated AD source transformation
want: consistency check with FD
get: no match

� blame the AD tool - or -
� compare forward to reverse
� compare to other AD tool

� blame code: model’s built-in numerical approximations,
external optimization scheme, inherent in the physics,
inconsistent initial state, initial state at domain boundary?
→ fixes needed by model/application expert

higher-order handling of nonsmoothness: intervall inclusions - beam
physics(COSY), distance approximation - explicit g-stop facility for
ODEs, DAEs (ATOM-FT)
what to do about first order:

� Adol-C: tape verification and intrinsic handling

� OpenAD: (comparative tracing)

Intro to AD - Narayanan/Utke - July/2013 27

non-smooth models AD vs FD
have: complicated AD source transformation
want: consistency check with FD
get: no match

� blame the AD tool - or -
� compare forward to reverse
� compare to other AD tool

� blame code: model’s built-in numerical approximations,
external optimization scheme, inherent in the physics,
inconsistent initial state, initial state at domain boundary?
→ fixes needed by model/application expert

higher-order handling of nonsmoothness: intervall inclusions - beam
physics(COSY), distance approximation - explicit g-stop facility for
ODEs, DAEs (ATOM-FT)
what to do about first order:

� Adol-C: tape verification and intrinsic handling

� OpenAD: (comparative tracing)

Intro to AD - Narayanan/Utke - July/2013 27

Adol-C directional derivatives & exceptions

tape at 1.0 and rerun at

� 0.5, xdot=1.0 → ydot=3

� 0.0, xdot=1.0 → ydot=3

� 0.0, xdot=-1.0 → ydot=-2

� -0.5, xdot=1.0 → ydot=2

adouble foo(adouble x) {
adouble y;
y=fmax(2∗x,3∗x);
return y;
}

tape at 1.0 and rerun at

� 0.5, xdot=1.0 → ydot=.707107

� 0.0, xdot=1.0 → ydot=INF

� 0.0, xdot=-1.0 → ydot=NaN

adouble foo(adouble x) {
adouble y;
y=sqrt(x);
return y;
}

and on a higher level...

Intro to AD - Narayanan/Utke - July/2013 28

Should AD make educated guesses?
consider y=max(a(x),b(x))
at the tie

a b

ba
i i

y

pick direction from Taylor
coefficients of first non-tied
max(ai, bi) ?
consistency for unresolved ties:
take ȧ or ḃ
and compare that to an adjoint
split:

ā+ =
ȳ
2 and b̄+ =

ȳ
2

consider y =
√
x and ẏ|x=+0 =

0 if ẋ = 0 ???
+INF if ẋ > 0
NaN if ẋ < 0

option: (manually) inject a C1 regularization r(t) for t ∈ [0, ε]
such that ṙ(0) = 0 and ṙ(ε) = 1

2
√
ε

consider maxloc: tie-breaking argument maxval may differ from
argument identified by maxloc

Intro to AD - Narayanan/Utke - July/2013 29

case distinction

3 locally analytic

2 locally analytic but crossed a (potential) kink (min,max,abs,...)

or discontinuity (ceil,...) [for source transformation: also

different control flow]
1 we are exactly at a (potential) kink, discontinuity

0 tie on arithmetic comparison (e.g. a branch condition)→ potentially
discontinuous (can be determined only for some special cases)

[-1 (operator overloading specific) arithmetic comparison yields a
different value than before (tape invalid → sparsity pattern may be

changed,...)]

3

1
2

2

−1

0reference point 1

Intro to AD - Narayanan/Utke - July/2013 30

Adol-c: classifying non-smooth events
adouble foo(adouble x) {

adouble y;
if (x<=2.5)

y=2∗fmax(x,2.0);
else

y=3∗floor(x);
return y;
}

� tape at 2.2 and rerun at

� 2.3 → 3
� 2.0 → 1
� 2.5 → 0
� 2.6 → -1

� tape at 3.5 and rerun at

� 3.6 → 3
� 4.5 → 2
� 2.5 → -1

#include ”adolc.h”
adouble foo(adouble x);

int main() {
adouble x,y;
double xp,yp;
std::cout << ” tape at: ” ;
std::cin >> xp;
trace on(1);
x <<= xp;
y=foo(x);
y >>= yp;
trace off();
while (true) {

std::cout << ”rerun at: ”;
std::cin >> xp;
int rc=function(1,1,1,&xp,&yp);
std::cout<<”return code: ”<<rc<<std::endl;
}
}

validates tape but is unspecific /

Intro to AD - Narayanan/Utke - July/2013 31

Adol-c: classifying non-smooth events
adouble foo(adouble x) {

adouble y;
if (x<=2.5)

y=2∗fmax(x,2.0);
else

y=3∗floor(x);
return y;
}

� tape at 2.2 and rerun at

� 2.3 → 3
� 2.0 → 1
� 2.5 → 0
� 2.6 → -1

� tape at 3.5 and rerun at

� 3.6 → 3
� 4.5 → 2
� 2.5 → -1

#include ”adolc.h”
adouble foo(adouble x);

int main() {
adouble x,y;
double xp,yp;
std::cout << ” tape at: ” ;
std::cin >> xp;
trace on(1);
x <<= xp;
y=foo(x);
y >>= yp;
trace off();
while (true) {

std::cout << ”rerun at: ”;
std::cin >> xp;
int rc=function(1,1,1,&xp,&yp);
std::cout<<”return code: ”<<rc<<std::endl;
}
}

validates tape but is unspecific /

Intro to AD - Narayanan/Utke - July/2013 31

Adol-c: classifying non-smooth events
adouble foo(adouble x) {

adouble y;
if (x<=2.5)

y=2∗fmax(x,2.0);
else

y=3∗floor(x);
return y;
}

� tape at 2.2 and rerun at

� 2.3 → 3
� 2.0 → 1
� 2.5 → 0
� 2.6 → -1

� tape at 3.5 and rerun at

� 3.6 → 3
� 4.5 → 2
� 2.5 → -1

#include ”adolc.h”
adouble foo(adouble x);

int main() {
adouble x,y;
double xp,yp;
std::cout << ” tape at: ” ;
std::cin >> xp;
trace on(1);
x <<= xp;
y=foo(x);
y >>= yp;
trace off();
while (true) {

std::cout << ”rerun at: ”;
std::cin >> xp;
int rc=function(1,1,1,&xp,&yp);
std::cout<<”return code: ”<<rc<<std::endl;
}
}

validates tape but is unspecific /

Intro to AD - Narayanan/Utke - July/2013 31

more specific: OpenAD tracing (setup)

1 subroutine foo(t)
2 real :: t
3 call bar(t)
4 end subroutine
5 subroutine bar(t)
6 real :: t
7 t=tan(t)
8 end subroutine
9 subroutine head(x,y)

10 real :: x
11 real :: y
12 !$openad INDEPENDENT(x)
13 call foo(x)
14 call bar(x)
15 y=x
16 !$openad DEPENDENT(y)
17 end subroutine

1 program driver
2 use OAD active
3 use OAD rev
4 use OAD trace
5 implicit none
6 external head
7 type(active) :: x, y
8

9 x%v=.5D0
10 ! first trace
11 call oad trace init()
12 call oad trace open()
13 call head(x,y)
14 call oad trace close()

Intro to AD - Narayanan/Utke - July/2013 32

OpenAD tracing (output I)

(on the preprocessed source)

3 subroutine foo(t)
4 use OAD intrinsics
5 real :: t
6 call bar(t)
7 end subroutine
8 subroutine bar(t)
9 use OAD intrinsics

10 real :: t
11 t=tan(t)
12 end subroutine
13 subroutine head(x,y)
14 use OAD intrinsics
15 real :: x
16 real :: y
17 !$openad INDEPENDENT(x)
18 call foo(x)
19 call bar(x)
20 y=x
21 !$openad DEPENDENT(y)
22 end subroutine

<Trace number=”1”>
<Call name=”foo” line=”18”>
<Call name=”bar” line=”6”>
<Call name=”tan scal” line=”11”></Call>
<Tan sd=”0”/>
</Call>
</Call>
<Call name=”bar” line=”19”>
<Call name=”tan scal” line=”11”></Call>
<Tan sd=”0”/>
</Call>
</Trace>

Intro to AD - Narayanan/Utke - July/2013 33

OpenAD tracing (output II)

3 subroutine head(x1,x2,y)
4 use OAD intrinsics
5 real,intent(in) :: x1,x2
6 real,intent(out) :: y
7 integer i
8 !$openad INDEPENDENT(x1)
9 !$openad INDEPENDENT(x2)

10 y=x1
11 do i=int(x1),int(x2)+2
12 y = y∗x2
13 if (y>1.0) then
14 y = y∗2.0
15 end if
16 end do
17 !$openad DEPENDENT(y)
18 end subroutine head

<Trace number=”1”>
<Loop line=”11”>
<Branch line=”13”>
<Cfval val=”0”/>
</Branch>
<Branch line=”13”>
<Cfval val=”0”/>
</Branch>
<Branch line=”13”>
<Cfval val=”0”/>
</Branch>
<Cfval val=”3”/>
</Loop>
</Trace>

note context is the condition (rather than the comparison operator or int)

Intro to AD - Narayanan/Utke - July/2013 34

OpenAD tracing (output III)

3 subroutine head(x,y)
4 use OAD intrinsics
5 real :: x(2),y
6 !$openad INDEPENDENT(x)
7 y=0.0
8 do i=1,2
9 y = y+sin(x(i))+tan(x(i))

10 end do
11 !$openad DEPENDENT(y)
12 end subroutine

<Trace number=”1”>
<Call name=”tan scal” line=”9”>
<Arg name=”X”>
<Index val=”1”/>
</Arg>
</Call>
<Tan sd=”0”/>
<Call name=”tan scal” line=”9”>
<Arg name=”X”>
<Index val=”2”/>
</Arg>
</Call>
<Tan sd=”0”/>
</Trace>

note - sine doesn’t show up

Intro to AD - Narayanan/Utke - July/2013 35

OpenAD tracing (filtering)

basic filtering - static

� by file/line number

� by call stack context

� by argument name (iffy)

� by intrinsic/condition type

dynamic - by comparing traces

� against a reference

� subsequent

� e.g. for time stepping schemes

trace allows encoding an enumeration of nonsmooth events

Intro to AD - Narayanan/Utke - July/2013 36

OpenAD tracing (filtering)

basic filtering - static

� by file/line number

� by call stack context

� by argument name (iffy)

� by intrinsic/condition type

dynamic - by comparing traces

� against a reference

� subsequent

� e.g. for time stepping schemes

trace allows encoding an enumeration of nonsmooth events

Intro to AD - Narayanan/Utke - July/2013 36

OpenAD tracing (filtering)

basic filtering - static

� by file/line number

� by call stack context

� by argument name (iffy)

� by intrinsic/condition type

dynamic - by comparing traces

� against a reference

� subsequent

� e.g. for time stepping schemes

trace allows encoding an enumeration of nonsmooth events

Intro to AD - Narayanan/Utke - July/2013 36

OpenAD tracing (filtering)

basic filtering - static

� by file/line number

� by call stack context

� by argument name (iffy)

� by intrinsic/condition type

dynamic - by comparing traces

� against a reference

� subsequent

� e.g. for time stepping schemes

trace allows encoding an enumeration of nonsmooth events

Intro to AD - Narayanan/Utke - July/2013 36

OpenAD tracing (filtering)

basic filtering - static

� by file/line number

� by call stack context

� by argument name (iffy)

� by intrinsic/condition type

dynamic - by comparing traces

� against a reference

� subsequent

� e.g. for time stepping schemes

trace allows encoding an enumeration of nonsmooth events

Intro to AD - Narayanan/Utke - July/2013 36

OpenAD tracing (filtering)

basic filtering - static

� by file/line number

� by call stack context

� by argument name (iffy)

� by intrinsic/condition type

dynamic - by comparing traces

� against a reference

� subsequent

� e.g. for time stepping schemes

trace allows encoding an enumeration of nonsmooth events

Intro to AD - Narayanan/Utke - July/2013 36

OpenAD tracing (comparing)

<Trace number=”1”>
<Call name=”tan scal” line=”9”>
<Arg name=”X”>
<Index val=”1”/>
</Arg>
</Call>
<Tan sd=”0”/>
<Call name=”tan scal” line=”9”>
<Arg name=”X”>
<Index val=”2”/>
</Arg>
</Call>
<Tan sd=”0”/>
</Trace>

<Trace number=”2”>
<Call name=”tan scal” line=”9”>
<Arg name=”X”>
<Index val=”1”/>
</Arg>
</Call>
<Tan sd=”0”/>
<Call name=”tan scal” line=”9”>
<Arg name=”X”>
<Index val=”2”/>
</Arg>
</Call>
<Tan sd=”1”/>
</Trace>

note - tangent subdomain
⌊
x+π

2
π

⌋
changed

Intro to AD - Narayanan/Utke - July/2013 37

OpenAD tracing (comparing)

<Trace number=”1”>
<Call name=”tan scal” line=”9”>
<Arg name=”X”>
<Index val=”1”/>
</Arg>
</Call>
<Tan sd=”0”/>
<Call name=”tan scal” line=”9”>
<Arg name=”X”>
<Index val=”2”/>
</Arg>
</Call>
<Tan sd=”0”/>
</Trace>

<Trace number=”2”>
<Call name=”tan scal” line=”9”>
<Arg name=”X”>
<Index val=”1”/>
</Arg>
</Call>
<Tan sd=”0”/>
<Call name=”tan scal” line=”9”>
<Arg name=”X”>
<Index val=”2”/>
</Arg>
</Call>
<Tan sd=”1”/>
</Trace>

note - tangent subdomain
⌊
x+π

2
π

⌋
changed

Intro to AD - Narayanan/Utke - July/2013 37

Checkpointing

� have model with high computational complexity and need
adjoints

� spatial requirements (NP complete DAG/call tree reversal)
back to adjoint

� in theory: no distinction between checkpoints and trace

� limited automatic support
� in practice: well defined location for argument checkpoints

� fix checkpoint location and spacing (trace fits into memory)
� tool determines checkpoint elements
� use hierarchical checkpointing (to limit number of checkpoints)

� optimize scheme e.g. with revolve (uniform steps)

Intro to AD - Narayanan/Utke - July/2013 38

storage also needed for control flow trace and addresses...

original CFG ⇒ record a path through the CFG ⇒ adjoint CFG

Entry(1)

B(2)

Branch(3)

B(4)

 T

Loop(5)

 F

EndBranch(8)

B(9)

Exit(10)

F

B(6)

 T

EndLoop(7)

⇒

Entry(1)

B(2)’

Branch(3)

B(4)’

T

iLc

 F

pB T

EndBranch(8)

B(9)’

Exit(10)

Loop(5)

B(6)’

T

pLc

F

+Lc

EndLoop(7)

pB F

⇒

Entry(10)

B(9)’’

pB

Branch(8)

B(4)’’

 T

pLc

 F

Loop(7)

B(6)’’

 T

EndBranch(3)

F

EndLoop(5)B(2)’’

Exit(1)

often cheap with structured control flow and simple address
computations (e.g. index from loop variables)

unstructured control flow and pointers are expensive

Intro to AD - Narayanan/Utke - July/2013 39

trace all at once = global split mode
subroutine A()

call B(); call

D(); call B();

end subroutine A

subroutine B()

call C()

end subroutine B

subroutine C()

call E()

end subroutine C
3(1) 3(2)

2(1)

1

4 2(2)

5

1

4

1

4

3(1)

2(1)

3(2)

2(2)

3(2) 3(1)

2(1)2(2)

5 5

S
n

n-th invocation of subroutine S subroutine call

run forward order of execution

store checkpoint restore checkpoint

run forward and tape run adjoint

� have memory limits - need to create tapes for short sections in
reverse order

� subroutine is “natural” checkpoint granularity, different mode...

Intro to AD - Narayanan/Utke - July/2013 40

trace one SR at a time = global joint mode

11

4

3(1)

2(1)

3(2)

2(2)

5

4 4

5 5 53(2)

2(2) 2(2)

3(2) 3(2)

2(1) 2(1)

3(1) 3(1) 3(1)

taping-adjoint pairs
checkpoint-recompute pairs
the deeper the call stack - the more recomputations
(unimplemented solution - result checkpointing)
familiar tradeoff between storing and recomputation at a higher
level but in theory can be all unified.
in practice - hybrid approaches...

Intro to AD - Narayanan/Utke - July/2013 41

ADified Shallow Water Call Graph

inifields

readparms

read_data_file

read_data_fields

prep_depthcheck_cfl

make_masks

ini_scales prep_coriolis

determine_data_time

read_field read_extended_field boundary_conditions

read_depth_data variance

map_from_control_vector

loop_body_wrapper_outer

read_data

read_eta_data

make_weights

is_eta_data_time

make_weights_depth

make_weights_eta make_weights_uv

make_weights_zonal_transport

make_weights_lapldepth

make_weights_graddepth

forward_model

map_to_control_vector length_of_control_vector

time_step

umomentum vmomentum continuity calc_zonal_transport_split

initial_values calc_depth_uv calc_zonal_transport_joint

cost_function

cost_depth

loop_body_wrapper_inner

shallow_water

� mix joint and split mode

� nested loop checkpointing in outer and inner loop body wrapper

� inner loop body in split mode

� calc zonal transport is used in both contexts

Intro to AD - Narayanan/Utke - July/2013 42

OpenAD reversal modes with checkpointing

subroutine level granularity

f

i1 i2 i3 i4

o1 o2

f

o2 o2

i4 i4 i4i3

plain mode

i3 i3

split mode

Intro to AD - Narayanan/Utke - July/2013 43

in OpenAD orchestrated with templates

� OpenAnalysis provides side-effect analysis

� provides checkpoint sets as references to (local/global) variables

� we ask for four sets: ModLocal ⊆ Mod, ReadLocal ⊆ Read

S

S1

2

template variables
subroutine variables
setup

state indicates task 1

pre state chng. task 1

post state chng. task 1

state indicates task 2

pre state chng. task 2

post state chng. task 2

wrapup

subroutine template()
use OAD tape ! tape storage
use OAD rev ! state structure

!$TEMPLATE PRAGMA DECLARATIONS
if (rev modetape) then

! the state component
! ’taping’ is true
!$PLACEHOLDER PRAGMA$ id=2

end if

if (rev modeadjoint) then
! the state component
! ’adjoint’ run is true
!$PLACEHOLDER PRAGMA$ id=3

end if

end subroutine template

look again at the shallow water example

Intro to AD - Narayanan/Utke - July/2013 44

OpenAD - example shallow water mmodel

� cd ~/OpenAD

� . ./setenv.sh

� cd Examples/ShallowWater/; make clean

� make

� look at files under OADrts

� wad_template.joint.f
� ad_template.joint_split_iif.f
� ad_template.joint_split_oif.f
� ad_template.split.f
� ad_template_timing.joint.f

� referenced by directives such as
c$openad XXX Template OADrts/ad_template.split.f

Intro to AD - Narayanan/Utke - July/2013 45

AD tools applied to practical applications
� goal: maintain single code base

� operator overloading

� transparent type change
� transparent I/O adjustments
� driver logic
� preprocessing and templates (C++)

� source transformation

� ”whole source” transformation - regardless of code
modularization

� single ”file” transformation step many-to-many make rule
problem

� no easy separation of numerical core because of syntactic
envelopes

� common issues:

� (external) library calls
� numerical approximations
� coding issues (things to be avoided)

� no ”standardized” solutions - but have examples for good
practice

Intro to AD - Narayanan/Utke - July/2013 46

AD tools applied to practical applications
� goal: maintain single code base
� operator overloading

� transparent type change
� transparent I/O adjustments

� driver logic
� preprocessing and templates (C++)

� source transformation

� ”whole source” transformation - regardless of code
modularization

� single ”file” transformation step many-to-many make rule
problem

� no easy separation of numerical core because of syntactic
envelopes

� common issues:

� (external) library calls
� numerical approximations
� coding issues (things to be avoided)

� no ”standardized” solutions - but have examples for good
practice

Intro to AD - Narayanan/Utke - July/2013 46

AD tools applied to practical applications
� goal: maintain single code base
� operator overloading

� transparent type change
� transparent I/O adjustments
� driver logic

� preprocessing and templates (C++)
� source transformation

� ”whole source” transformation - regardless of code
modularization

� single ”file” transformation step many-to-many make rule
problem

� no easy separation of numerical core because of syntactic
envelopes

� common issues:

� (external) library calls
� numerical approximations
� coding issues (things to be avoided)

� no ”standardized” solutions - but have examples for good
practice

Intro to AD - Narayanan/Utke - July/2013 46

AD tools applied to practical applications
� goal: maintain single code base
� operator overloading

� transparent type change
� transparent I/O adjustments
� driver logic
� preprocessing and templates (C++)

� source transformation

� ”whole source” transformation - regardless of code
modularization

� single ”file” transformation step many-to-many make rule
problem

� no easy separation of numerical core because of syntactic
envelopes

� common issues:

� (external) library calls
� numerical approximations
� coding issues (things to be avoided)

� no ”standardized” solutions - but have examples for good
practice

Intro to AD - Narayanan/Utke - July/2013 46

AD tools applied to practical applications
� goal: maintain single code base
� operator overloading

� transparent type change
� transparent I/O adjustments
� driver logic
� preprocessing and templates (C++)

� source transformation
� ”whole source” transformation - regardless of code

modularization

� single ”file” transformation step many-to-many make rule
problem

� no easy separation of numerical core because of syntactic
envelopes

� common issues:

� (external) library calls
� numerical approximations
� coding issues (things to be avoided)

� no ”standardized” solutions - but have examples for good
practice

Intro to AD - Narayanan/Utke - July/2013 46

AD tools applied to practical applications
� goal: maintain single code base
� operator overloading

� transparent type change
� transparent I/O adjustments
� driver logic
� preprocessing and templates (C++)

� source transformation
� ”whole source” transformation - regardless of code

modularization
� single ”file” transformation step many-to-many make rule

problem

� no easy separation of numerical core because of syntactic
envelopes

� common issues:

� (external) library calls
� numerical approximations
� coding issues (things to be avoided)

� no ”standardized” solutions - but have examples for good
practice

Intro to AD - Narayanan/Utke - July/2013 46

AD tools applied to practical applications
� goal: maintain single code base
� operator overloading

� transparent type change
� transparent I/O adjustments
� driver logic
� preprocessing and templates (C++)

� source transformation
� ”whole source” transformation - regardless of code

modularization
� single ”file” transformation step many-to-many make rule

problem
� no easy separation of numerical core because of syntactic

envelopes

� common issues:

� (external) library calls
� numerical approximations
� coding issues (things to be avoided)

� no ”standardized” solutions - but have examples for good
practice

Intro to AD - Narayanan/Utke - July/2013 46

AD tools applied to practical applications
� goal: maintain single code base
� operator overloading

� transparent type change
� transparent I/O adjustments
� driver logic
� preprocessing and templates (C++)

� source transformation
� ”whole source” transformation - regardless of code

modularization
� single ”file” transformation step many-to-many make rule

problem
� no easy separation of numerical core because of syntactic

envelopes
� common issues:

� (external) library calls
� numerical approximations
� coding issues (things to be avoided)

� no ”standardized” solutions - but have examples for good
practice

Intro to AD - Narayanan/Utke - July/2013 46

AD tools applied to practical applications
� goal: maintain single code base
� operator overloading

� transparent type change
� transparent I/O adjustments
� driver logic
� preprocessing and templates (C++)

� source transformation
� ”whole source” transformation - regardless of code

modularization
� single ”file” transformation step many-to-many make rule

problem
� no easy separation of numerical core because of syntactic

envelopes
� common issues:

� (external) library calls
� numerical approximations
� coding issues (things to be avoided)

� no ”standardized” solutions - but have examples for good
practice

Intro to AD - Narayanan/Utke - July/2013 46

ADIC: larger code example

pass to Krishna ...

Intro to AD - Narayanan/Utke - July/2013 47

OpenAD: MITgcm example I

� code design with AD & performance in mind

� modularity by packaging selected at configuration time

� link all selected source files into a single build directory

� F77 → no compile dependencies

� numerical core (i.e. the code to AD transformed) identified as
a subset

� discretization fixed at configure time → fixed-size arrays and
loop bounds

� → better compiler optimization & less data to trace for
control flow reversal

� know about and exploit self-adjoint operators

� AD specific constructs enabled by preprocessing

� extensive regression testing, including the adjoint

let’s have a look... cd ~/MITgcm/verification/OpenAD/build

Intro to AD - Narayanan/Utke - July/2013 48

OpenAD: MITgcm example I

� code design with AD & performance in mind

� modularity by packaging selected at configuration time

� link all selected source files into a single build directory

� F77 → no compile dependencies

� numerical core (i.e. the code to AD transformed) identified as
a subset

� discretization fixed at configure time → fixed-size arrays and
loop bounds

� → better compiler optimization & less data to trace for
control flow reversal

� know about and exploit self-adjoint operators

� AD specific constructs enabled by preprocessing

� extensive regression testing, including the adjoint

let’s have a look... cd ~/MITgcm/verification/OpenAD/build

Intro to AD - Narayanan/Utke - July/2013 48

OpenAD: MITgcm example I

� code design with AD & performance in mind

� modularity by packaging selected at configuration time

� link all selected source files into a single build directory

� F77 → no compile dependencies

� numerical core (i.e. the code to AD transformed) identified as
a subset

� discretization fixed at configure time → fixed-size arrays and
loop bounds

� → better compiler optimization & less data to trace for
control flow reversal

� know about and exploit self-adjoint operators

� AD specific constructs enabled by preprocessing

� extensive regression testing, including the adjoint

let’s have a look... cd ~/MITgcm/verification/OpenAD/build

Intro to AD - Narayanan/Utke - July/2013 48

OpenAD: MITgcm example I

� code design with AD & performance in mind

� modularity by packaging selected at configuration time

� link all selected source files into a single build directory

� F77 → no compile dependencies

� numerical core (i.e. the code to AD transformed) identified as
a subset

� discretization fixed at configure time → fixed-size arrays and
loop bounds

� → better compiler optimization & less data to trace for
control flow reversal

� know about and exploit self-adjoint operators

� AD specific constructs enabled by preprocessing

� extensive regression testing, including the adjoint

let’s have a look... cd ~/MITgcm/verification/OpenAD/build

Intro to AD - Narayanan/Utke - July/2013 48

OpenAD: MITgcm example I

� code design with AD & performance in mind

� modularity by packaging selected at configuration time

� link all selected source files into a single build directory

� F77 → no compile dependencies

� numerical core (i.e. the code to AD transformed) identified as
a subset

� discretization fixed at configure time → fixed-size arrays and
loop bounds

� → better compiler optimization & less data to trace for
control flow reversal

� know about and exploit self-adjoint operators

� AD specific constructs enabled by preprocessing

� extensive regression testing, including the adjoint

let’s have a look... cd ~/MITgcm/verification/OpenAD/build

Intro to AD - Narayanan/Utke - July/2013 48

OpenAD: MITgcm example I

� code design with AD & performance in mind

� modularity by packaging selected at configuration time

� link all selected source files into a single build directory

� F77 → no compile dependencies

� numerical core (i.e. the code to AD transformed) identified as
a subset

� discretization fixed at configure time → fixed-size arrays and
loop bounds

� → better compiler optimization & less data to trace for
control flow reversal

� know about and exploit self-adjoint operators

� AD specific constructs enabled by preprocessing

� extensive regression testing, including the adjoint

let’s have a look... cd ~/MITgcm/verification/OpenAD/build

Intro to AD - Narayanan/Utke - July/2013 48

OpenAD: MITgcm example I

� code design with AD & performance in mind

� modularity by packaging selected at configuration time

� link all selected source files into a single build directory

� F77 → no compile dependencies

� numerical core (i.e. the code to AD transformed) identified as
a subset

� discretization fixed at configure time → fixed-size arrays and
loop bounds

� → better compiler optimization & less data to trace for
control flow reversal

� know about and exploit self-adjoint operators

� AD specific constructs enabled by preprocessing

� extensive regression testing, including the adjoint

let’s have a look... cd ~/MITgcm/verification/OpenAD/build

Intro to AD - Narayanan/Utke - July/2013 48

OpenAD: MITgcm example I

� code design with AD & performance in mind

� modularity by packaging selected at configuration time

� link all selected source files into a single build directory

� F77 → no compile dependencies

� numerical core (i.e. the code to AD transformed) identified as
a subset

� discretization fixed at configure time → fixed-size arrays and
loop bounds

� → better compiler optimization & less data to trace for
control flow reversal

� know about and exploit self-adjoint operators

� AD specific constructs enabled by preprocessing

� extensive regression testing, including the adjoint

let’s have a look... cd ~/MITgcm/verification/OpenAD/build

Intro to AD - Narayanan/Utke - July/2013 48

OpenAD: MITgcm example II

� generated Makefile is model-configuration / machine /
compiler specific

� placeholder target postProcess.tag for the
many-to-one-to-many dependency

� top level routine exposed to OpenAD is in the_main_loop.F

� look for DEPENDENT/INDEPENDENT pragmas

� OpenAD coexists with TAF/TAMC

� time stepping in main_do_loop.F

� template pragmas inserted by script during make

� notable in
ad_input_code_sf.pre.s2p.xb.x2w.w2f.td.ff90:255796

C$openad XXX Template ../../../tools/OAD support/ad template.revolve.f

Intro to AD - Narayanan/Utke - July/2013 49

OpenAD: MITgcm example II

� generated Makefile is model-configuration / machine /
compiler specific

� placeholder target postProcess.tag for the
many-to-one-to-many dependency

� top level routine exposed to OpenAD is in the_main_loop.F

� look for DEPENDENT/INDEPENDENT pragmas

� OpenAD coexists with TAF/TAMC

� time stepping in main_do_loop.F

� template pragmas inserted by script during make

� notable in
ad_input_code_sf.pre.s2p.xb.x2w.w2f.td.ff90:255796

C$openad XXX Template ../../../tools/OAD support/ad template.revolve.f

Intro to AD - Narayanan/Utke - July/2013 49

OpenAD: MITgcm example II

� generated Makefile is model-configuration / machine /
compiler specific

� placeholder target postProcess.tag for the
many-to-one-to-many dependency

� top level routine exposed to OpenAD is in the_main_loop.F

� look for DEPENDENT/INDEPENDENT pragmas

� OpenAD coexists with TAF/TAMC

� time stepping in main_do_loop.F

� template pragmas inserted by script during make

� notable in
ad_input_code_sf.pre.s2p.xb.x2w.w2f.td.ff90:255796

C$openad XXX Template ../../../tools/OAD support/ad template.revolve.f

Intro to AD - Narayanan/Utke - July/2013 49

OpenAD: MITgcm example II

� generated Makefile is model-configuration / machine /
compiler specific

� placeholder target postProcess.tag for the
many-to-one-to-many dependency

� top level routine exposed to OpenAD is in the_main_loop.F

� look for DEPENDENT/INDEPENDENT pragmas

� OpenAD coexists with TAF/TAMC

� time stepping in main_do_loop.F

� template pragmas inserted by script during make

� notable in
ad_input_code_sf.pre.s2p.xb.x2w.w2f.td.ff90:255796

C$openad XXX Template ../../../tools/OAD support/ad template.revolve.f

Intro to AD - Narayanan/Utke - July/2013 49

OpenAD: MITgcm example II

� generated Makefile is model-configuration / machine /
compiler specific

� placeholder target postProcess.tag for the
many-to-one-to-many dependency

� top level routine exposed to OpenAD is in the_main_loop.F

� look for DEPENDENT/INDEPENDENT pragmas

� OpenAD coexists with TAF/TAMC

� time stepping in main_do_loop.F

� template pragmas inserted by script during make

� notable in
ad_input_code_sf.pre.s2p.xb.x2w.w2f.td.ff90:255796

C$openad XXX Template ../../../tools/OAD support/ad template.revolve.f

Intro to AD - Narayanan/Utke - July/2013 49

OpenAD: MITgcm example II

� generated Makefile is model-configuration / machine /
compiler specific

� placeholder target postProcess.tag for the
many-to-one-to-many dependency

� top level routine exposed to OpenAD is in the_main_loop.F

� look for DEPENDENT/INDEPENDENT pragmas

� OpenAD coexists with TAF/TAMC

� time stepping in main_do_loop.F

� template pragmas inserted by script during make

� notable in
ad_input_code_sf.pre.s2p.xb.x2w.w2f.td.ff90:255796

C$openad XXX Template ../../../tools/OAD support/ad template.revolve.f

Intro to AD - Narayanan/Utke - July/2013 49

Adol-C: ISSM
� C++ model

cd ~/issm

� global type change double to IssmDouble and IssmPDouble

look at src/c/shared/Numerics/types.h

� templated allocation / deallocation
look at ./src/c/shared/MemOps/MemOps.h

� replace all new/delete and malloc/free
� templatize containers

look at ./src/c/toolkits/issm/IssmMat.h

� treatment of solvers as external functions
look at ./src/c/toolkits/gsl/DenseGslSolve.cpp

� no brute-force differentiation through the solver code
� MPI/PETsc treatment is underway (not in the public SVN repo)

� passing data to passive code with reCast

look at ./src/c/shared/Numerics/recast.h
� reCast injections represent majority of the manual adaptation

work

Intro to AD - Narayanan/Utke - July/2013 50

Adol-C: ISSM
� C++ model

cd ~/issm

� global type change double to IssmDouble and IssmPDouble

look at src/c/shared/Numerics/types.h

� templated allocation / deallocation
look at ./src/c/shared/MemOps/MemOps.h

� replace all new/delete and malloc/free
� templatize containers

look at ./src/c/toolkits/issm/IssmMat.h

� treatment of solvers as external functions
look at ./src/c/toolkits/gsl/DenseGslSolve.cpp

� no brute-force differentiation through the solver code
� MPI/PETsc treatment is underway (not in the public SVN repo)

� passing data to passive code with reCast

look at ./src/c/shared/Numerics/recast.h
� reCast injections represent majority of the manual adaptation

work

Intro to AD - Narayanan/Utke - July/2013 50

Adol-C: ISSM
� C++ model

cd ~/issm

� global type change double to IssmDouble and IssmPDouble

look at src/c/shared/Numerics/types.h

� templated allocation / deallocation
look at ./src/c/shared/MemOps/MemOps.h

� replace all new/delete and malloc/free

� templatize containers
look at ./src/c/toolkits/issm/IssmMat.h

� treatment of solvers as external functions
look at ./src/c/toolkits/gsl/DenseGslSolve.cpp

� no brute-force differentiation through the solver code
� MPI/PETsc treatment is underway (not in the public SVN repo)

� passing data to passive code with reCast

look at ./src/c/shared/Numerics/recast.h
� reCast injections represent majority of the manual adaptation

work

Intro to AD - Narayanan/Utke - July/2013 50

Adol-C: ISSM
� C++ model

cd ~/issm

� global type change double to IssmDouble and IssmPDouble

look at src/c/shared/Numerics/types.h

� templated allocation / deallocation
look at ./src/c/shared/MemOps/MemOps.h

� replace all new/delete and malloc/free
� templatize containers

look at ./src/c/toolkits/issm/IssmMat.h

� treatment of solvers as external functions
look at ./src/c/toolkits/gsl/DenseGslSolve.cpp

� no brute-force differentiation through the solver code
� MPI/PETsc treatment is underway (not in the public SVN repo)

� passing data to passive code with reCast

look at ./src/c/shared/Numerics/recast.h
� reCast injections represent majority of the manual adaptation

work

Intro to AD - Narayanan/Utke - July/2013 50

Adol-C: ISSM
� C++ model

cd ~/issm

� global type change double to IssmDouble and IssmPDouble

look at src/c/shared/Numerics/types.h

� templated allocation / deallocation
look at ./src/c/shared/MemOps/MemOps.h

� replace all new/delete and malloc/free
� templatize containers

look at ./src/c/toolkits/issm/IssmMat.h

� treatment of solvers as external functions
look at ./src/c/toolkits/gsl/DenseGslSolve.cpp

� no brute-force differentiation through the solver code

� MPI/PETsc treatment is underway (not in the public SVN repo)

� passing data to passive code with reCast

look at ./src/c/shared/Numerics/recast.h
� reCast injections represent majority of the manual adaptation

work

Intro to AD - Narayanan/Utke - July/2013 50

Adol-C: ISSM
� C++ model

cd ~/issm

� global type change double to IssmDouble and IssmPDouble

look at src/c/shared/Numerics/types.h

� templated allocation / deallocation
look at ./src/c/shared/MemOps/MemOps.h

� replace all new/delete and malloc/free
� templatize containers

look at ./src/c/toolkits/issm/IssmMat.h

� treatment of solvers as external functions
look at ./src/c/toolkits/gsl/DenseGslSolve.cpp

� no brute-force differentiation through the solver code
� MPI/PETsc treatment is underway (not in the public SVN repo)

� passing data to passive code with reCast

look at ./src/c/shared/Numerics/recast.h

� reCast injections represent majority of the manual adaptation
work

Intro to AD - Narayanan/Utke - July/2013 50

Adol-C: ISSM
� C++ model

cd ~/issm

� global type change double to IssmDouble and IssmPDouble

look at src/c/shared/Numerics/types.h

� templated allocation / deallocation
look at ./src/c/shared/MemOps/MemOps.h

� replace all new/delete and malloc/free
� templatize containers

look at ./src/c/toolkits/issm/IssmMat.h

� treatment of solvers as external functions
look at ./src/c/toolkits/gsl/DenseGslSolve.cpp

� no brute-force differentiation through the solver code
� MPI/PETsc treatment is underway (not in the public SVN repo)

� passing data to passive code with reCast

look at ./src/c/shared/Numerics/recast.h
� reCast injections represent majority of the manual adaptation

work
Intro to AD - Narayanan/Utke - July/2013 50

model coding standard & AD tool capabilities I

obvious (by now) recommendations regarding smoothness:

� avoid introducing numerical special cases

� pathological cases at domain boundaries, initial conditions

� filter out computations outside of the actual domain (e.g.
√

0)

� consider explicit logic to smooth (e.g. C1 ?) kinks and
discontinuities

alternative (to be implemented on demand) approaches:

� slopes (interval based)

� Laurent series (w different rules regarding ±INF and NaN)

Intro to AD - Narayanan/Utke - July/2013 51

model coding standard and AD tool capabilities II
want: precise compile-time data flow analysis (activity, side effect, etc...)
have: conservative overestimate of aliasing, MOD sets, ...
how to reduce the overestimate:

� extract the numerical core (if possible)

� encapsulate ancillary logic (monitoring, debugging, timing, I/O,...)
� small classes, routines, source files (good coding practice anyway)
� extraction via source file selection
� filtered-out routines (“black box”) - with optimistic(!) assumptions
� provide stubs when optimistic assumptions are inappropriate
� transformation shielded from dealing with non-numeric language features
� note: the top level model driver needs to be manually adjusted

� avoid semantic ambiguities (void*, union, equivalence)

� avoid unstructured control flow (analysis, control flow reversal)

� beware of non-contiguous data, e.g. linked lists (checkpointing, reverse
access)

� beware of indirection, e.g. a[h[i]] vs. a[i] (data dependence)

� avoid implicit F77 style reshaping (overwrite detection)

Intro to AD - Narayanan/Utke - July/2013 52

model coding standard & AD tool capabilities III

want: to use nice feature N
have: a tool that has no clue how to deal with N
� dynamic resource handling in reverse mode, some examples:

� dynamic memory (when locally released)
� file handles (same)
� MPI communicators (same)
� garbage collectors ...

no generic tool support (yet), requires extensive bookkeeping
� concerns when dealing with third party libraries

� availability of the source code
� numerical core extraction
� smoothness
� analysis overhead (e.g. MPI ?)

research underway for blas, lapack, MPI, openMP

� beware of out-of-core data dependencies (data transfer via
files)

Intro to AD - Narayanan/Utke - July/2013 53

use of checkpointing to mitigate storage requirements
iteration

runtime

� 11 iters., memory limited to one iter. of storing J i &
3 checkpoints

� optimal (binomial) scheme encoded in revolve; F9X
implementation available at
http://mercurial.mcs.anl.gov/ad/RevolveF9X

Intro to AD - Narayanan/Utke - July/2013 54

http://mercurial.mcs.anl.gov/ad/RevolveF9X

use of checkpointing to mitigate storage requirements
iteration

runtime

� 11 iters., memory limited to one iter. of storing J i &
3 checkpoints

� optimal (binomial) scheme encoded in revolve; F9X
implementation available at
http://mercurial.mcs.anl.gov/ad/RevolveF9X

Intro to AD - Narayanan/Utke - July/2013 54

http://mercurial.mcs.anl.gov/ad/RevolveF9X

OpenAD: revolve with a prefab subroutine template
iteration loop:

!$openad XXX Template ad revolve.f

subroutine loopWrapper(x,n)

double precision :: x

integer :: n

!$openad INDEPENDENT(x)

do i=1,n

call loopBody(x)

end do

!$openad DEPENDENT(x)

end subroutine

� init revolve

� revolve loop

� get the action

� transformation provides:

� store checkpoint
� restore checkpoint
� forward to a iteration
� store & adjoin

� OpenAD has documented
examples

rc=rvInit(n,cpCnt,errMsg)

do while (rvAct%actionFlag/=rvDone)

rvAct=rvNextAction()

select case (rvAct%actionFlag)

case (rvStore)

call cp write open(rvAct%iteration)

!$PLACEHOLDER PRAGMA$ id=4

call cp close()

case (rvRestore)

call cp read open(rvAct%iteration)

!$PLACEHOLDER PRAGMA$ id=6

currIter=rvAct%iteration

call cp close()

case (rvForward)

oadRevMod%plain=.TRUE.

oadRevMod%tape=.FALSE.

oadRevMod%adjoint=.FALSE.

do while (currIter<rvAct%iteration)

call loopBody(x)

currIter=currIter+1

end do

case (rvFirstUTurn)

oadRevMod%plain=.FALSE.

oadRevMod%tape=.TRUE.

oadRevMod%adjoint=.FALSE.

call loopBody(x)

oadRevMod%tape=.FALSE.

oadRevMod%adjoint=.TRUE.

call loopBody(x)

case (rvUTurn)...

end select

end do

Intro to AD - Narayanan/Utke - July/2013 55

OpenAD: revolve with a prefab subroutine template
iteration loop:

!$openad XXX Template ad revolve.f

subroutine loopWrapper(x,n)

double precision :: x

integer :: n

!$openad INDEPENDENT(x)

do i=1,n

call loopBody(x)

end do

!$openad DEPENDENT(x)

end subroutine

� init revolve

� revolve loop

� get the action

� transformation provides:

� store checkpoint
� restore checkpoint
� forward to a iteration
� store & adjoin

� OpenAD has documented
examples

rc=rvInit(n,cpCnt,errMsg)

do while (rvAct%actionFlag/=rvDone)

rvAct=rvNextAction()

select case (rvAct%actionFlag)

case (rvStore)

call cp write open(rvAct%iteration)

!$PLACEHOLDER PRAGMA$ id=4

call cp close()

case (rvRestore)

call cp read open(rvAct%iteration)

!$PLACEHOLDER PRAGMA$ id=6

currIter=rvAct%iteration

call cp close()

case (rvForward)

oadRevMod%plain=.TRUE.

oadRevMod%tape=.FALSE.

oadRevMod%adjoint=.FALSE.

do while (currIter<rvAct%iteration)

call loopBody(x)

currIter=currIter+1

end do

case (rvFirstUTurn)

oadRevMod%plain=.FALSE.

oadRevMod%tape=.TRUE.

oadRevMod%adjoint=.FALSE.

call loopBody(x)

oadRevMod%tape=.FALSE.

oadRevMod%adjoint=.TRUE.

call loopBody(x)

case (rvUTurn)...

end select

end do

Intro to AD - Narayanan/Utke - July/2013 55

OpenAD: revolve with a prefab subroutine template
iteration loop:

!$openad XXX Template ad revolve.f

subroutine loopWrapper(x,n)

double precision :: x

integer :: n

!$openad INDEPENDENT(x)

do i=1,n

call loopBody(x)

end do

!$openad DEPENDENT(x)

end subroutine

� init revolve

� revolve loop

� get the action

� transformation provides:

� store checkpoint
� restore checkpoint
� forward to a iteration
� store & adjoin

� OpenAD has documented
examples

rc=rvInit(n,cpCnt,errMsg)

do while (rvAct%actionFlag/=rvDone)

rvAct=rvNextAction()

select case (rvAct%actionFlag)

case (rvStore)

call cp write open(rvAct%iteration)

!$PLACEHOLDER PRAGMA$ id=4

call cp close()

case (rvRestore)

call cp read open(rvAct%iteration)

!$PLACEHOLDER PRAGMA$ id=6

currIter=rvAct%iteration

call cp close()

case (rvForward)

oadRevMod%plain=.TRUE.

oadRevMod%tape=.FALSE.

oadRevMod%adjoint=.FALSE.

do while (currIter<rvAct%iteration)

call loopBody(x)

currIter=currIter+1

end do

case (rvFirstUTurn)

oadRevMod%plain=.FALSE.

oadRevMod%tape=.TRUE.

oadRevMod%adjoint=.FALSE.

call loopBody(x)

oadRevMod%tape=.FALSE.

oadRevMod%adjoint=.TRUE.

call loopBody(x)

case (rvUTurn)...

end select

end do

Intro to AD - Narayanan/Utke - July/2013 55

OpenAD: revolve with a prefab subroutine template
iteration loop:

!$openad XXX Template ad revolve.f

subroutine loopWrapper(x,n)

double precision :: x

integer :: n

!$openad INDEPENDENT(x)

do i=1,n

call loopBody(x)

end do

!$openad DEPENDENT(x)

end subroutine

� init revolve

� revolve loop

� get the action

� transformation provides:

� store checkpoint
� restore checkpoint
� forward to a iteration
� store & adjoin

� OpenAD has documented
examples

rc=rvInit(n,cpCnt,errMsg)

do while (rvAct%actionFlag/=rvDone)

rvAct=rvNextAction()

select case (rvAct%actionFlag)

case (rvStore)

call cp write open(rvAct%iteration)

!$PLACEHOLDER PRAGMA$ id=4

call cp close()

case (rvRestore)

call cp read open(rvAct%iteration)

!$PLACEHOLDER PRAGMA$ id=6

currIter=rvAct%iteration

call cp close()

case (rvForward)

oadRevMod%plain=.TRUE.

oadRevMod%tape=.FALSE.

oadRevMod%adjoint=.FALSE.

do while (currIter<rvAct%iteration)

call loopBody(x)

currIter=currIter+1

end do

case (rvFirstUTurn)

oadRevMod%plain=.FALSE.

oadRevMod%tape=.TRUE.

oadRevMod%adjoint=.FALSE.

call loopBody(x)

oadRevMod%tape=.FALSE.

oadRevMod%adjoint=.TRUE.

call loopBody(x)

case (rvUTurn)...

end select

end do

Intro to AD - Narayanan/Utke - July/2013 55

OpenAD: revolve with a prefab subroutine template
iteration loop:

!$openad XXX Template ad revolve.f

subroutine loopWrapper(x,n)

double precision :: x

integer :: n

!$openad INDEPENDENT(x)

do i=1,n

call loopBody(x)

end do

!$openad DEPENDENT(x)

end subroutine

� init revolve

� revolve loop

� get the action

� transformation provides:

� store checkpoint

� restore checkpoint
� forward to a iteration
� store & adjoin

� OpenAD has documented
examples

rc=rvInit(n,cpCnt,errMsg)

do while (rvAct%actionFlag/=rvDone)

rvAct=rvNextAction()

select case (rvAct%actionFlag)

case (rvStore)

call cp write open(rvAct%iteration)

!$PLACEHOLDER PRAGMA$ id=4

call cp close()

case (rvRestore)

call cp read open(rvAct%iteration)

!$PLACEHOLDER PRAGMA$ id=6

currIter=rvAct%iteration

call cp close()

case (rvForward)

oadRevMod%plain=.TRUE.

oadRevMod%tape=.FALSE.

oadRevMod%adjoint=.FALSE.

do while (currIter<rvAct%iteration)

call loopBody(x)

currIter=currIter+1

end do

case (rvFirstUTurn)

oadRevMod%plain=.FALSE.

oadRevMod%tape=.TRUE.

oadRevMod%adjoint=.FALSE.

call loopBody(x)

oadRevMod%tape=.FALSE.

oadRevMod%adjoint=.TRUE.

call loopBody(x)

case (rvUTurn)...

end select

end do

Intro to AD - Narayanan/Utke - July/2013 55

OpenAD: revolve with a prefab subroutine template
iteration loop:

!$openad XXX Template ad revolve.f

subroutine loopWrapper(x,n)

double precision :: x

integer :: n

!$openad INDEPENDENT(x)

do i=1,n

call loopBody(x)

end do

!$openad DEPENDENT(x)

end subroutine

� init revolve

� revolve loop

� get the action

� transformation provides:

� store checkpoint
� restore checkpoint

� forward to a iteration
� store & adjoin

� OpenAD has documented
examples

rc=rvInit(n,cpCnt,errMsg)

do while (rvAct%actionFlag/=rvDone)

rvAct=rvNextAction()

select case (rvAct%actionFlag)

case (rvStore)

call cp write open(rvAct%iteration)

!$PLACEHOLDER PRAGMA$ id=4

call cp close()

case (rvRestore)

call cp read open(rvAct%iteration)

!$PLACEHOLDER PRAGMA$ id=6

currIter=rvAct%iteration

call cp close()

case (rvForward)

oadRevMod%plain=.TRUE.

oadRevMod%tape=.FALSE.

oadRevMod%adjoint=.FALSE.

do while (currIter<rvAct%iteration)

call loopBody(x)

currIter=currIter+1

end do

case (rvFirstUTurn)

oadRevMod%plain=.FALSE.

oadRevMod%tape=.TRUE.

oadRevMod%adjoint=.FALSE.

call loopBody(x)

oadRevMod%tape=.FALSE.

oadRevMod%adjoint=.TRUE.

call loopBody(x)

case (rvUTurn)...

end select

end do

Intro to AD - Narayanan/Utke - July/2013 55

OpenAD: revolve with a prefab subroutine template
iteration loop:

!$openad XXX Template ad revolve.f

subroutine loopWrapper(x,n)

double precision :: x

integer :: n

!$openad INDEPENDENT(x)

do i=1,n

call loopBody(x)

end do

!$openad DEPENDENT(x)

end subroutine

� init revolve

� revolve loop

� get the action

� transformation provides:

� store checkpoint
� restore checkpoint
� forward to a iteration

� store & adjoin

� OpenAD has documented
examples

rc=rvInit(n,cpCnt,errMsg)

do while (rvAct%actionFlag/=rvDone)

rvAct=rvNextAction()

select case (rvAct%actionFlag)

case (rvStore)

call cp write open(rvAct%iteration)

!$PLACEHOLDER PRAGMA$ id=4

call cp close()

case (rvRestore)

call cp read open(rvAct%iteration)

!$PLACEHOLDER PRAGMA$ id=6

currIter=rvAct%iteration

call cp close()

case (rvForward)

oadRevMod%plain=.TRUE.

oadRevMod%tape=.FALSE.

oadRevMod%adjoint=.FALSE.

do while (currIter<rvAct%iteration)

call loopBody(x)

currIter=currIter+1

end do

case (rvFirstUTurn)

oadRevMod%plain=.FALSE.

oadRevMod%tape=.TRUE.

oadRevMod%adjoint=.FALSE.

call loopBody(x)

oadRevMod%tape=.FALSE.

oadRevMod%adjoint=.TRUE.

call loopBody(x)

case (rvUTurn)...

end select

end do

Intro to AD - Narayanan/Utke - July/2013 55

OpenAD: revolve with a prefab subroutine template
iteration loop:

!$openad XXX Template ad revolve.f

subroutine loopWrapper(x,n)

double precision :: x

integer :: n

!$openad INDEPENDENT(x)

do i=1,n

call loopBody(x)

end do

!$openad DEPENDENT(x)

end subroutine

� init revolve

� revolve loop

� get the action

� transformation provides:

� store checkpoint
� restore checkpoint
� forward to a iteration
� store & adjoin

� OpenAD has documented
examples

rc=rvInit(n,cpCnt,errMsg)

do while (rvAct%actionFlag/=rvDone)

rvAct=rvNextAction()

select case (rvAct%actionFlag)

case (rvStore)

call cp write open(rvAct%iteration)

!$PLACEHOLDER PRAGMA$ id=4

call cp close()

case (rvRestore)

call cp read open(rvAct%iteration)

!$PLACEHOLDER PRAGMA$ id=6

currIter=rvAct%iteration

call cp close()

case (rvForward)

oadRevMod%plain=.TRUE.

oadRevMod%tape=.FALSE.

oadRevMod%adjoint=.FALSE.

do while (currIter<rvAct%iteration)

call loopBody(x)

currIter=currIter+1

end do

case (rvFirstUTurn)

oadRevMod%plain=.FALSE.

oadRevMod%tape=.TRUE.

oadRevMod%adjoint=.FALSE.

call loopBody(x)

oadRevMod%tape=.FALSE.

oadRevMod%adjoint=.TRUE.

call loopBody(x)

case (rvUTurn)...

end select

end do

Intro to AD - Narayanan/Utke - July/2013 55

OpenAD: revolve with a prefab subroutine template
iteration loop:

!$openad XXX Template ad revolve.f

subroutine loopWrapper(x,n)

double precision :: x

integer :: n

!$openad INDEPENDENT(x)

do i=1,n

call loopBody(x)

end do

!$openad DEPENDENT(x)

end subroutine

� init revolve

� revolve loop

� get the action

� transformation provides:

� store checkpoint
� restore checkpoint
� forward to a iteration
� store & adjoin

� OpenAD has documented
examples

rc=rvInit(n,cpCnt,errMsg)

do while (rvAct%actionFlag/=rvDone)

rvAct=rvNextAction()

select case (rvAct%actionFlag)

case (rvStore)

call cp write open(rvAct%iteration)

!$PLACEHOLDER PRAGMA$ id=4

call cp close()

case (rvRestore)

call cp read open(rvAct%iteration)

!$PLACEHOLDER PRAGMA$ id=6

currIter=rvAct%iteration

call cp close()

case (rvForward)

oadRevMod%plain=.TRUE.

oadRevMod%tape=.FALSE.

oadRevMod%adjoint=.FALSE.

do while (currIter<rvAct%iteration)

call loopBody(x)

currIter=currIter+1

end do

case (rvFirstUTurn)

oadRevMod%plain=.FALSE.

oadRevMod%tape=.TRUE.

oadRevMod%adjoint=.FALSE.

call loopBody(x)

oadRevMod%tape=.FALSE.

oadRevMod%adjoint=.TRUE.

call loopBody(x)

case (rvUTurn)...

end select

end do

Intro to AD - Narayanan/Utke - July/2013 55

external libraries/frameworks (1)

� interfaces implement fixed mathematical meaning

� may be a “black box” (different language, proprietary)

� hopefully has derivatives easily implementable with the library
calls, e.g. blas,
� linear solves x = A−1b

� one can show ẋ = A−1(ḃ− Ȧx)
� b̄ = A−T x̄; Ā+ = −b̄xT

� often requires single call encapsulation

� brute force differentiation as last resort

� always consider augment convergence criterion for iterative
numerical methods (chapter 15 in Griewank/Walther)

� efficiency considerations, see “delayed piggyback” e.g. for
iterations xk+1 = f(xk)

Intro to AD - Narayanan/Utke - July/2013 56

external libraries/frameworks (1)

� interfaces implement fixed mathematical meaning

� may be a “black box” (different language, proprietary)

� hopefully has derivatives easily implementable with the library
calls, e.g. blas,
� linear solves x = A−1b

� one can show ẋ = A−1(ḃ− Ȧx)
� b̄ = A−T x̄; Ā+ = −b̄xT

� often requires single call encapsulation

� brute force differentiation as last resort

� always consider augment convergence criterion for iterative
numerical methods (chapter 15 in Griewank/Walther)

� efficiency considerations, see “delayed piggyback” e.g. for
iterations xk+1 = f(xk)

Intro to AD - Narayanan/Utke - July/2013 56

external libraries/frameworks (1)

� interfaces implement fixed mathematical meaning

� may be a “black box” (different language, proprietary)

� hopefully has derivatives easily implementable with the library
calls, e.g. blas,
� linear solves x = A−1b

� one can show ẋ = A−1(ḃ− Ȧx)
� b̄ = A−T x̄; Ā+ = −b̄xT

� often requires single call encapsulation

� brute force differentiation as last resort

� always consider augment convergence criterion for iterative
numerical methods (chapter 15 in Griewank/Walther)

� efficiency considerations, see “delayed piggyback” e.g. for
iterations xk+1 = f(xk)

Intro to AD - Narayanan/Utke - July/2013 56

external libraries/frameworks (1)

� interfaces implement fixed mathematical meaning

� may be a “black box” (different language, proprietary)

� hopefully has derivatives easily implementable with the library
calls, e.g. blas,
� linear solves x = A−1b

� one can show ẋ = A−1(ḃ− Ȧx)
� b̄ = A−T x̄; Ā+ = −b̄xT

� often requires single call encapsulation

� brute force differentiation as last resort

� always consider augment convergence criterion for iterative
numerical methods (chapter 15 in Griewank/Walther)

� efficiency considerations, see “delayed piggyback” e.g. for
iterations xk+1 = f(xk)

Intro to AD - Narayanan/Utke - July/2013 56

external libraries/frameworks (1)

� interfaces implement fixed mathematical meaning

� may be a “black box” (different language, proprietary)

� hopefully has derivatives easily implementable with the library
calls, e.g. blas,
� linear solves x = A−1b

� one can show ẋ = A−1(ḃ− Ȧx)
� b̄ = A−T x̄; Ā+ = −b̄xT

� often requires single call encapsulation

� brute force differentiation as last resort

� always consider augment convergence criterion for iterative
numerical methods (chapter 15 in Griewank/Walther)

� efficiency considerations, see “delayed piggyback” e.g. for
iterations xk+1 = f(xk)

Intro to AD - Narayanan/Utke - July/2013 56

external libraries/frameworks (2)

� no generic “differentiated” libraries (attempt for MPI)

� efficient implementation tied to AD tool implementation

� high level uses of differentiation also to be considered for
frameworks (examples neos, trilinos, petsc)

� advanced topics: Taylor coefficient recursions, mathematical
mappings split over multiple library calls (reverse mode)

� examples:

� UMFPACK:
cd ~/OpenAD/Examples/LibWrappers/UmfPack_2.2_active

� self-adjoint:
vi ~/MITgcm/tools/OAD_support/ad_template.sa_cg2d.F

� GSL:
vi ~/issm/src/c/toolkits/gsl/DenseGslSolve.cpp

Intro to AD - Narayanan/Utke - July/2013 57

external libraries/frameworks (2)

� no generic “differentiated” libraries (attempt for MPI)

� efficient implementation tied to AD tool implementation

� high level uses of differentiation also to be considered for
frameworks (examples neos, trilinos, petsc)

� advanced topics: Taylor coefficient recursions, mathematical
mappings split over multiple library calls (reverse mode)

� examples:

� UMFPACK:
cd ~/OpenAD/Examples/LibWrappers/UmfPack_2.2_active

� self-adjoint:
vi ~/MITgcm/tools/OAD_support/ad_template.sa_cg2d.F

� GSL:
vi ~/issm/src/c/toolkits/gsl/DenseGslSolve.cpp

Intro to AD - Narayanan/Utke - July/2013 57

external libraries/frameworks (2)

� no generic “differentiated” libraries (attempt for MPI)

� efficient implementation tied to AD tool implementation

� high level uses of differentiation also to be considered for
frameworks (examples neos, trilinos, petsc)

� advanced topics: Taylor coefficient recursions, mathematical
mappings split over multiple library calls (reverse mode)

� examples:

� UMFPACK:
cd ~/OpenAD/Examples/LibWrappers/UmfPack_2.2_active

� self-adjoint:
vi ~/MITgcm/tools/OAD_support/ad_template.sa_cg2d.F

� GSL:
vi ~/issm/src/c/toolkits/gsl/DenseGslSolve.cpp

Intro to AD - Narayanan/Utke - July/2013 57

external libraries/frameworks (2)

� no generic “differentiated” libraries (attempt for MPI)

� efficient implementation tied to AD tool implementation

� high level uses of differentiation also to be considered for
frameworks (examples neos, trilinos, petsc)

� advanced topics: Taylor coefficient recursions, mathematical
mappings split over multiple library calls (reverse mode)

� examples:

� UMFPACK:
cd ~/OpenAD/Examples/LibWrappers/UmfPack_2.2_active

� self-adjoint:
vi ~/MITgcm/tools/OAD_support/ad_template.sa_cg2d.F

� GSL:
vi ~/issm/src/c/toolkits/gsl/DenseGslSolve.cpp

Intro to AD - Narayanan/Utke - July/2013 57

external libraries/frameworks (2)

� no generic “differentiated” libraries (attempt for MPI)

� efficient implementation tied to AD tool implementation

� high level uses of differentiation also to be considered for
frameworks (examples neos, trilinos, petsc)

� advanced topics: Taylor coefficient recursions, mathematical
mappings split over multiple library calls (reverse mode)

� examples:
� UMFPACK:

cd ~/OpenAD/Examples/LibWrappers/UmfPack_2.2_active
� self-adjoint:

vi ~/MITgcm/tools/OAD_support/ad_template.sa_cg2d.F
� GSL:

vi ~/issm/src/c/toolkits/gsl/DenseGslSolve.cpp

Intro to AD - Narayanan/Utke - July/2013 57

higher order AD (1)

� propagation of (univariate) Taylor polynomials up to order o (in d

directions) with coefficients a
(i)
j , j = 1 . . . o(, i = 1 . . . d) around a

common point a0 ≡ ai0 in the domain

φ(ao + h) = φ(a0) + φ′(a0) · h+
φ′′(a0)

2!
· h2 + . . .+

φ(d)(a0)

o!
· ho

� i.e. again no numerical approximation using finite differences

� for “general” functions b = φ(a) the computation of the bij can be
costly
(Faa di Bruno’s formula)

� but the propagation is applied to the sequence of programming
language intrinsics

� and all relevant non-linear univariate (Fortran/C++) intrinsics φ
can be seen as ODE solutions

Intro to AD - Narayanan/Utke - July/2013 58

higher order AD (1)

� propagation of (univariate) Taylor polynomials up to order o (in d

directions) with coefficients a
(i)
j , j = 1 . . . o(, i = 1 . . . d) around a

common point a0 ≡ ai0 in the domain

φ(ao + h) = φ(a0) + φ′(a0) · h+
φ′′(a0)

2!
· h2 + . . .+

φ(d)(a0)

o!
· ho

� i.e. again no numerical approximation using finite differences

� for “general” functions b = φ(a) the computation of the bij can be
costly
(Faa di Bruno’s formula)

� but the propagation is applied to the sequence of programming
language intrinsics

� and all relevant non-linear univariate (Fortran/C++) intrinsics φ
can be seen as ODE solutions

Intro to AD - Narayanan/Utke - July/2013 58

higher order AD (1)

� propagation of (univariate) Taylor polynomials up to order o (in d

directions) with coefficients a
(i)
j , j = 1 . . . o(, i = 1 . . . d) around a

common point a0 ≡ ai0 in the domain

φ(ao + h) = φ(a0) + φ′(a0) · h+
φ′′(a0)

2!
· h2 + . . .+

φ(d)(a0)

o!
· ho

� i.e. again no numerical approximation using finite differences

� for “general” functions b = φ(a) the computation of the bij can be
costly
(Faa di Bruno’s formula)

� but the propagation is applied to the sequence of programming
language intrinsics

� and all relevant non-linear univariate (Fortran/C++) intrinsics φ
can be seen as ODE solutions

Intro to AD - Narayanan/Utke - July/2013 58

higher order AD (1)

� propagation of (univariate) Taylor polynomials up to order o (in d

directions) with coefficients a
(i)
j , j = 1 . . . o(, i = 1 . . . d) around a

common point a0 ≡ ai0 in the domain

φ(ao + h) = φ(a0) + φ′(a0) · h+
φ′′(a0)

2!
· h2 + . . .+

φ(d)(a0)

o!
· ho

� i.e. again no numerical approximation using finite differences

� for “general” functions b = φ(a) the computation of the bij can be
costly
(Faa di Bruno’s formula)

� but the propagation is applied to the sequence of programming
language intrinsics

� and all relevant non-linear univariate (Fortran/C++) intrinsics φ
can be seen as ODE solutions

Intro to AD - Narayanan/Utke - July/2013 58

higher order AD (2)

� using ODE approach permits (cheap) recurrence formulas for the
coefficients, e.g. for b = ar we get

b̃k =
1

ao

(
r

k∑
j=1

bk−j ãj −
k−1∑
j=1

ak−j b̃j

)
with c̃j = jcj

� sine and cosine are coupled

s = sin(u) : s̃k =

k∑
j=1

ũjck−j and c = cos(u) : c̃k =

k∑
j=1

−ũjsk−j

� arithmetic operations are simple, e.g. for c = a ∗ b we have the
convolution

ck =

k∑
j=0

aj ∗ bk−j

� others see the AD book (Griewank, Walther SIAM 2008)

� cost approx. O(o2) (arithmetic) operations
(for first order underlying ODE up to one nonlinear univariate)

Intro to AD - Narayanan/Utke - July/2013 59

higher order AD (2)

� using ODE approach permits (cheap) recurrence formulas for the
coefficients, e.g. for b = ar we get

b̃k =
1

ao

(
r

k∑
j=1

bk−j ãj −
k−1∑
j=1

ak−j b̃j

)
with c̃j = jcj

� sine and cosine are coupled

s = sin(u) : s̃k =

k∑
j=1

ũjck−j and c = cos(u) : c̃k =

k∑
j=1

−ũjsk−j

� arithmetic operations are simple, e.g. for c = a ∗ b we have the
convolution

ck =

k∑
j=0

aj ∗ bk−j

� others see the AD book (Griewank, Walther SIAM 2008)

� cost approx. O(o2) (arithmetic) operations
(for first order underlying ODE up to one nonlinear univariate)

Intro to AD - Narayanan/Utke - July/2013 59

higher order AD (2)

� using ODE approach permits (cheap) recurrence formulas for the
coefficients, e.g. for b = ar we get

b̃k =
1

ao

(
r

k∑
j=1

bk−j ãj −
k−1∑
j=1

ak−j b̃j

)
with c̃j = jcj

� sine and cosine are coupled

s = sin(u) : s̃k =

k∑
j=1

ũjck−j and c = cos(u) : c̃k =

k∑
j=1

−ũjsk−j

� arithmetic operations are simple, e.g. for c = a ∗ b we have the
convolution

ck =

k∑
j=0

aj ∗ bk−j

� others see the AD book (Griewank, Walther SIAM 2008)

� cost approx. O(o2) (arithmetic) operations
(for first order underlying ODE up to one nonlinear univariate)

Intro to AD - Narayanan/Utke - July/2013 59

higher order AD (2)

� using ODE approach permits (cheap) recurrence formulas for the
coefficients, e.g. for b = ar we get

b̃k =
1

ao

(
r

k∑
j=1

bk−j ãj −
k−1∑
j=1

ak−j b̃j

)
with c̃j = jcj

� sine and cosine are coupled

s = sin(u) : s̃k =

k∑
j=1

ũjck−j and c = cos(u) : c̃k =

k∑
j=1

−ũjsk−j

� arithmetic operations are simple, e.g. for c = a ∗ b we have the
convolution

ck =

k∑
j=0

aj ∗ bk−j

� others see the AD book (Griewank, Walther SIAM 2008)

� cost approx. O(o2) (arithmetic) operations
(for first order underlying ODE up to one nonlinear univariate)

Intro to AD - Narayanan/Utke - July/2013 59

higher order AD (2)

� using ODE approach permits (cheap) recurrence formulas for the
coefficients, e.g. for b = ar we get

b̃k =
1

ao

(
r

k∑
j=1

bk−j ãj −
k−1∑
j=1

ak−j b̃j

)
with c̃j = jcj

� sine and cosine are coupled

s = sin(u) : s̃k =

k∑
j=1

ũjck−j and c = cos(u) : c̃k =

k∑
j=1

−ũjsk−j

� arithmetic operations are simple, e.g. for c = a ∗ b we have the
convolution

ck =

k∑
j=0

aj ∗ bk−j

� others see the AD book (Griewank, Walther SIAM 2008)

� cost approx. O(o2) (arithmetic) operations
(for first order underlying ODE up to one nonlinear univariate)

Intro to AD - Narayanan/Utke - July/2013 59

higher order AD (3)

� higher order AD conveniently implemented via operator and intrinsic
overloading (C++, Fortran)

� want to avoid code explosion; have less emphasis on reverse mode

� for example in Adol-C (Juedes, Griewank, U. in ACM TOMS 1996);
library code (preprocessed & reformatted)

Tres += pk−1; Targ1 += pk−1; Targ2 += pk−1;
for (l=p−1; l>=0; l−−)

for (i=k−1; i>=0; i−−) {
∗Tres = dp T0[arg1]∗∗Targ2−− + ∗Targ1−−∗dp T0[arg2];
Targ1OP = Targ1−i+1;
Targ2OP = Targ2;
for (j=0;j<i;j++) {
∗Tres += (∗Targ1OP++) ∗ (∗Targ2OP−−);
}
Tres−−;
}

dp T0[res] = dp T0[arg1] ∗ dp T0[arg2];

� uses a work array and various pointers into it; the indices res, arg1,
arg2 have been previously recorded; p = number of directions, k =
derivative order
makes compiler optimization difficult etc.; various AD tools

Intro to AD - Narayanan/Utke - July/2013 60

higher order AD (3)

� higher order AD conveniently implemented via operator and intrinsic
overloading (C++, Fortran)

� want to avoid code explosion; have less emphasis on reverse mode

� for example in Adol-C (Juedes, Griewank, U. in ACM TOMS 1996);
library code (preprocessed & reformatted)

Tres += pk−1; Targ1 += pk−1; Targ2 += pk−1;
for (l=p−1; l>=0; l−−)

for (i=k−1; i>=0; i−−) {
∗Tres = dp T0[arg1]∗∗Targ2−− + ∗Targ1−−∗dp T0[arg2];
Targ1OP = Targ1−i+1;
Targ2OP = Targ2;
for (j=0;j<i;j++) {
∗Tres += (∗Targ1OP++) ∗ (∗Targ2OP−−);
}
Tres−−;
}

dp T0[res] = dp T0[arg1] ∗ dp T0[arg2];

� uses a work array and various pointers into it; the indices res, arg1,
arg2 have been previously recorded; p = number of directions, k =
derivative order
makes compiler optimization difficult etc.; various AD tools

Intro to AD - Narayanan/Utke - July/2013 60

higher order AD (3)

� higher order AD conveniently implemented via operator and intrinsic
overloading (C++, Fortran)

� want to avoid code explosion; have less emphasis on reverse mode

� for example in Adol-C (Juedes, Griewank, U. in ACM TOMS 1996);
library code (preprocessed & reformatted)

Tres += pk−1; Targ1 += pk−1; Targ2 += pk−1;
for (l=p−1; l>=0; l−−)

for (i=k−1; i>=0; i−−) {
∗Tres = dp T0[arg1]∗∗Targ2−− + ∗Targ1−−∗dp T0[arg2];
Targ1OP = Targ1−i+1;
Targ2OP = Targ2;
for (j=0;j<i;j++) {
∗Tres += (∗Targ1OP++) ∗ (∗Targ2OP−−);
}
Tres−−;
}

dp T0[res] = dp T0[arg1] ∗ dp T0[arg2];

� uses a work array and various pointers into it; the indices res, arg1,
arg2 have been previously recorded; p = number of directions, k =
derivative order
makes compiler optimization difficult etc.; various AD tools

Intro to AD - Narayanan/Utke - July/2013 60

higher order AD (3)

� higher order AD conveniently implemented via operator and intrinsic
overloading (C++, Fortran)

� want to avoid code explosion; have less emphasis on reverse mode

� for example in Adol-C (Juedes, Griewank, U. in ACM TOMS 1996);
library code (preprocessed & reformatted)

Tres += pk−1; Targ1 += pk−1; Targ2 += pk−1;
for (l=p−1; l>=0; l−−)

for (i=k−1; i>=0; i−−) {
∗Tres = dp T0[arg1]∗∗Targ2−− + ∗Targ1−−∗dp T0[arg2];
Targ1OP = Targ1−i+1;
Targ2OP = Targ2;
for (j=0;j<i;j++) {
∗Tres += (∗Targ1OP++) ∗ (∗Targ2OP−−);
}
Tres−−;
}

dp T0[res] = dp T0[arg1] ∗ dp T0[arg2];

� uses a work array and various pointers into it; the indices res, arg1,
arg2 have been previously recorded; p = number of directions, k =
derivative order
makes compiler optimization difficult etc.; various AD tools

Intro to AD - Narayanan/Utke - July/2013 60

multivariate derivatives - interpolation approach

have n inputs, coefficient multi-indices track differentiation with
respect to individual inputs; exploit symmetry
� direct w multi index management: COSY, AD02,..

� univariate + interpolation: Adol-C, Rapsodia
(Griewank,U., Walther, Math. of Comp. 2000)

� for all tensors up to order o and n inputs one needs d ≡
(
n+o−1

o

)
directions

� the directions are the multi-indices t ∈ INn
0 , where each

ti, i = 1 . . . n represents the derivative order with respect to
input xi

� exploits symmetry - e.g., the two Hessian elements H12 = ∂2

∂x1∂x2

and H21 = ∂2

∂x2∂x1
are both represented by t = (1, 1).

� interpolation coefficients are precomputed
� practical advantage can be observed already for small o > 3
� interpolation error is typically negligible except in some cases;

use modified schemes (Neidinger 2004 -)

Intro to AD - Narayanan/Utke - July/2013 61

multivariate derivatives - interpolation approach

have n inputs, coefficient multi-indices track differentiation with
respect to individual inputs; exploit symmetry
� direct w multi index management: COSY, AD02,..
� univariate + interpolation: Adol-C, Rapsodia

(Griewank,U., Walther, Math. of Comp. 2000)

� for all tensors up to order o and n inputs one needs d ≡
(
n+o−1

o

)
directions

� the directions are the multi-indices t ∈ INn
0 , where each

ti, i = 1 . . . n represents the derivative order with respect to
input xi

� exploits symmetry - e.g., the two Hessian elements H12 = ∂2

∂x1∂x2

and H21 = ∂2

∂x2∂x1
are both represented by t = (1, 1).

� interpolation coefficients are precomputed
� practical advantage can be observed already for small o > 3
� interpolation error is typically negligible except in some cases;

use modified schemes (Neidinger 2004 -)

Intro to AD - Narayanan/Utke - July/2013 61

multivariate derivatives - interpolation approach

have n inputs, coefficient multi-indices track differentiation with
respect to individual inputs; exploit symmetry
� direct w multi index management: COSY, AD02,..
� univariate + interpolation: Adol-C, Rapsodia

(Griewank,U., Walther, Math. of Comp. 2000)
� for all tensors up to order o and n inputs one needs d ≡

(
n+o−1

o

)
directions

� the directions are the multi-indices t ∈ INn
0 , where each

ti, i = 1 . . . n represents the derivative order with respect to
input xi

� exploits symmetry - e.g., the two Hessian elements H12 = ∂2

∂x1∂x2

and H21 = ∂2

∂x2∂x1
are both represented by t = (1, 1).

� interpolation coefficients are precomputed
� practical advantage can be observed already for small o > 3
� interpolation error is typically negligible except in some cases;

use modified schemes (Neidinger 2004 -)

Intro to AD - Narayanan/Utke - July/2013 61

multivariate derivatives - interpolation approach

have n inputs, coefficient multi-indices track differentiation with
respect to individual inputs; exploit symmetry
� direct w multi index management: COSY, AD02,..
� univariate + interpolation: Adol-C, Rapsodia

(Griewank,U., Walther, Math. of Comp. 2000)
� for all tensors up to order o and n inputs one needs d ≡

(
n+o−1

o

)
directions

� the directions are the multi-indices t ∈ INn
0 , where each

ti, i = 1 . . . n represents the derivative order with respect to
input xi

� exploits symmetry - e.g., the two Hessian elements H12 = ∂2

∂x1∂x2

and H21 = ∂2

∂x2∂x1
are both represented by t = (1, 1).

� interpolation coefficients are precomputed
� practical advantage can be observed already for small o > 3
� interpolation error is typically negligible except in some cases;

use modified schemes (Neidinger 2004 -)

Intro to AD - Narayanan/Utke - July/2013 61

multivariate derivatives - interpolation approach

have n inputs, coefficient multi-indices track differentiation with
respect to individual inputs; exploit symmetry
� direct w multi index management: COSY, AD02,..
� univariate + interpolation: Adol-C, Rapsodia

(Griewank,U., Walther, Math. of Comp. 2000)
� for all tensors up to order o and n inputs one needs d ≡

(
n+o−1

o

)
directions

� the directions are the multi-indices t ∈ INn
0 , where each

ti, i = 1 . . . n represents the derivative order with respect to
input xi

� exploits symmetry - e.g., the two Hessian elements H12 = ∂2

∂x1∂x2

and H21 = ∂2

∂x2∂x1
are both represented by t = (1, 1).

� interpolation coefficients are precomputed
� practical advantage can be observed already for small o > 3
� interpolation error is typically negligible except in some cases;

use modified schemes (Neidinger 2004 -)

Intro to AD - Narayanan/Utke - July/2013 61

multivariate derivatives - interpolation approach

have n inputs, coefficient multi-indices track differentiation with
respect to individual inputs; exploit symmetry
� direct w multi index management: COSY, AD02,..
� univariate + interpolation: Adol-C, Rapsodia

(Griewank,U., Walther, Math. of Comp. 2000)
� for all tensors up to order o and n inputs one needs d ≡

(
n+o−1

o

)
directions

� the directions are the multi-indices t ∈ INn
0 , where each

ti, i = 1 . . . n represents the derivative order with respect to
input xi

� exploits symmetry - e.g., the two Hessian elements H12 = ∂2

∂x1∂x2

and H21 = ∂2

∂x2∂x1
are both represented by t = (1, 1).

� interpolation coefficients are precomputed

� practical advantage can be observed already for small o > 3
� interpolation error is typically negligible except in some cases;

use modified schemes (Neidinger 2004 -)

Intro to AD - Narayanan/Utke - July/2013 61

multivariate derivatives - interpolation approach

have n inputs, coefficient multi-indices track differentiation with
respect to individual inputs; exploit symmetry
� direct w multi index management: COSY, AD02,..
� univariate + interpolation: Adol-C, Rapsodia

(Griewank,U., Walther, Math. of Comp. 2000)
� for all tensors up to order o and n inputs one needs d ≡

(
n+o−1

o

)
directions

� the directions are the multi-indices t ∈ INn
0 , where each

ti, i = 1 . . . n represents the derivative order with respect to
input xi

� exploits symmetry - e.g., the two Hessian elements H12 = ∂2

∂x1∂x2

and H21 = ∂2

∂x2∂x1
are both represented by t = (1, 1).

� interpolation coefficients are precomputed
� practical advantage can be observed already for small o > 3

� interpolation error is typically negligible except in some cases;
use modified schemes (Neidinger 2004 -)

Intro to AD - Narayanan/Utke - July/2013 61

multivariate derivatives - interpolation approach

have n inputs, coefficient multi-indices track differentiation with
respect to individual inputs; exploit symmetry
� direct w multi index management: COSY, AD02,..
� univariate + interpolation: Adol-C, Rapsodia

(Griewank,U., Walther, Math. of Comp. 2000)
� for all tensors up to order o and n inputs one needs d ≡

(
n+o−1

o

)
directions

� the directions are the multi-indices t ∈ INn
0 , where each

ti, i = 1 . . . n represents the derivative order with respect to
input xi

� exploits symmetry - e.g., the two Hessian elements H12 = ∂2

∂x1∂x2

and H21 = ∂2

∂x2∂x1
are both represented by t = (1, 1).

� interpolation coefficients are precomputed
� practical advantage can be observed already for small o > 3
� interpolation error is typically negligible except in some cases;

use modified schemes (Neidinger 2004 -)
Intro to AD - Narayanan/Utke - July/2013 61

multivariate derivatives - tools

� special purpose tools: COSY, AD for R, Matlab

� general purpose tools: Adol-C, AD02, CppAD, ...

� ... with emphasis on performance - Rapsodia
(Charpentier, U.; OMS 2009) - example of generated code

r.v = a.v ∗ b.v;
r.d1 1 = a.v ∗ b.d1 1 + a.d1 1 ∗ b.v;
r.d1 2 = a.v ∗ b.d1 2 + a.d1 1 ∗ b.d1 1 + a.d1 2 ∗ b.v;
r.d1 3 = a.v ∗ b.d1 3 + a.d1 1 ∗ b.d1 2 + a.d1 2 ∗ b.d1 1 + a.d1 3 ∗ b.v;
r.d2 1 = a.v ∗ b.d2 1 + a.d2 1 ∗ b.v;
r.d2 2 = a.v ∗ b.d2 2 + a.d2 1 ∗ b.d2 1 + a.d2 2 ∗ b.v;
r.d2 3 = a.v ∗ b.d2 3 + a.d2 1 ∗ b.d2 2 + a.d2 2 ∗ b.d2 1 + a.d2 3 ∗ b.v;

� look again at Rapsodia
cd ~/RapsodiaExamples/CppStepByStep

Intro to AD - Narayanan/Utke - July/2013 62

multivariate derivatives - tools

� special purpose tools: COSY, AD for R, Matlab

� general purpose tools: Adol-C, AD02, CppAD, ...

� ... with emphasis on performance - Rapsodia
(Charpentier, U.; OMS 2009) - example of generated code

r.v = a.v ∗ b.v;
r.d1 1 = a.v ∗ b.d1 1 + a.d1 1 ∗ b.v;
r.d1 2 = a.v ∗ b.d1 2 + a.d1 1 ∗ b.d1 1 + a.d1 2 ∗ b.v;
r.d1 3 = a.v ∗ b.d1 3 + a.d1 1 ∗ b.d1 2 + a.d1 2 ∗ b.d1 1 + a.d1 3 ∗ b.v;
r.d2 1 = a.v ∗ b.d2 1 + a.d2 1 ∗ b.v;
r.d2 2 = a.v ∗ b.d2 2 + a.d2 1 ∗ b.d2 1 + a.d2 2 ∗ b.v;
r.d2 3 = a.v ∗ b.d2 3 + a.d2 1 ∗ b.d2 2 + a.d2 2 ∗ b.d2 1 + a.d2 3 ∗ b.v;

� look again at Rapsodia
cd ~/RapsodiaExamples/CppStepByStep

Intro to AD - Narayanan/Utke - July/2013 62

multivariate derivatives - tools

� special purpose tools: COSY, AD for R, Matlab

� general purpose tools: Adol-C, AD02, CppAD, ...

� ... with emphasis on performance - Rapsodia
(Charpentier, U.; OMS 2009) - example of generated code

r.v = a.v ∗ b.v;
r.d1 1 = a.v ∗ b.d1 1 + a.d1 1 ∗ b.v;
r.d1 2 = a.v ∗ b.d1 2 + a.d1 1 ∗ b.d1 1 + a.d1 2 ∗ b.v;
r.d1 3 = a.v ∗ b.d1 3 + a.d1 1 ∗ b.d1 2 + a.d1 2 ∗ b.d1 1 + a.d1 3 ∗ b.v;
r.d2 1 = a.v ∗ b.d2 1 + a.d2 1 ∗ b.v;
r.d2 2 = a.v ∗ b.d2 2 + a.d2 1 ∗ b.d2 1 + a.d2 2 ∗ b.v;
r.d2 3 = a.v ∗ b.d2 3 + a.d2 1 ∗ b.d2 2 + a.d2 2 ∗ b.d2 1 + a.d2 3 ∗ b.v;

� look again at Rapsodia
cd ~/RapsodiaExamples/CppStepByStep

Intro to AD - Narayanan/Utke - July/2013 62

multivariate derivatives - tools

� special purpose tools: COSY, AD for R, Matlab

� general purpose tools: Adol-C, AD02, CppAD, ...

� ... with emphasis on performance - Rapsodia
(Charpentier, U.; OMS 2009) - example of generated code

r.v = a.v ∗ b.v;
r.d1 1 = a.v ∗ b.d1 1 + a.d1 1 ∗ b.v;
r.d1 2 = a.v ∗ b.d1 2 + a.d1 1 ∗ b.d1 1 + a.d1 2 ∗ b.v;
r.d1 3 = a.v ∗ b.d1 3 + a.d1 1 ∗ b.d1 2 + a.d1 2 ∗ b.d1 1 + a.d1 3 ∗ b.v;
r.d2 1 = a.v ∗ b.d2 1 + a.d2 1 ∗ b.v;
r.d2 2 = a.v ∗ b.d2 2 + a.d2 1 ∗ b.d2 1 + a.d2 2 ∗ b.v;
r.d2 3 = a.v ∗ b.d2 3 + a.d2 1 ∗ b.d2 2 + a.d2 2 ∗ b.d2 1 + a.d2 3 ∗ b.v;

� look again at Rapsodia
cd ~/RapsodiaExamples/CppStepByStep

Intro to AD - Narayanan/Utke - July/2013 62

Q&A

thanks!

Intro to AD - Narayanan/Utke - July/2013 63

Tangent-linear Models

The tangent-linear model of

f : IRn → IRm, y = f(x)

is

ḟ : IRn+n → IRm, ẏ = Ḟ (x, ẋ) ≡ F ′(x) · ẋ .

Jacobian matrix

F ′ =
(
∂yj
∂xi

)j=1,...,m

i=1,...,n
=

F ′ · In

column by column at
O(n).

m

n q

0

0

0

0

0

0

0

1

.=

Intro to AD - Narayanan/Utke - July/2013 64

sparse Jacobians

many repeated Jacobian vector products → compress the Jacobian
F ′ · S = B ∈ IRm×q using a seed matrix S ∈ IRn×q

What are S and q?
Row i in F ′ has ρi nonzeros in columns v(1), . . . , v(ρi)
F ′i = (α1, . . . , αρi) = αT and the compressed row is
Bi = (β1, . . . , βq) = βT We choose S so we can solve:

Ŝiα = β

with ŜTi = (sv(1), . . . , sv(ρi))

v1 v2

ba

v3

Intro to AD - Narayanan/Utke - July/2013 65

determining q, S (1)

direct:
� Curtis/Powell/Reid: structurally orthogonal

� Coleman/Moré: column incidence graph coloring)

q is the color number in column incidence graph, each column in S
represents a color with a 1 for each entry whose corresponding
column in F ′ is of that color.

4

21

3

S =

1 0
0 1
1 0
0 1

reconstruct F ′ by relocating nonzero elements (direct)

Intro to AD - Narayanan/Utke - July/2013 66

determining q, S (2)

indirect:
� Newsam/Ramsdell: q = max

i
{#nonzeros} ≤ χ

� S is a (generalized) Vandermonde matrix[
λj−1
i

]
, j = 1 . . . q, λi 6= λi′

� How many different λi ?

same example

S =

λ0

1 λ1
1

λ0
2 λ1

2

λ0
3 λ1

3

λ0
4 λ1

4

4

21

3

S =

λ0

1 λ1
1

λ0
2 λ1

2

λ0
1 λ1

1

λ0
2 λ1

2

all combinations of columns (= rows of S): (1, 2), (2, 3), (1, 4)
improved condition via generalization approaches

Intro to AD - Narayanan/Utke - July/2013 67

example with a difference

3 colors
a b 0 0
c 0 d 0
e 0 0 f
0 0 g h

1 0 0
0 1 0
0 1 0
0 0 1

 =

a b 0
c d 0
e 0 f
0 g h

but with λ ∈ −1, 0, 1

a b 0 0
c 0 d 0
e 0 0 f
0 0 g h

1 −1
1 0
1 0
1 1

 =

a+ b −a
c+ d −c
e+ f f − e
g + h h

Intro to AD - Narayanan/Utke - July/2013 68

example forward compression

⇒

c©Hovland

Intro to AD - Narayanan/Utke - July/2013 69

Adjoint Models

The adjoint model of

F : IRn → IRm, y = F (x)

is

F̄ : IRn+m → IRn, x̄ = F̄ (x, ȳ) ≡ F ′(x)T · ȳ .

Jacobian matrix

F ′ =
(
∂yj
∂xi

)j=1,...,m

i=1,...,n
= (F ′)T · Im row by row at O(m) (cheap

gradients ,, tape intermediates / partials /)

p

n

m
0 0 0 1 0

.=

Intro to AD - Narayanan/Utke - July/2013 70

sparse Jacobians (2)

compress the Jacobian:
F ′T · S̄ = B ∈ IRn×p,with a seed matrix S̄ ∈ IRm×p:
Here q as maximal number of nonzeros in columns, or color
number in row incidence graph.

Combination through partitioning (Coleman/Verma):
� forward sweep

with q = 2

� reverse sweep
with p = 1 F ′

0 1
0 1

.

.

.

.

.

.
0 1
1 0

 =

� �
� �

.

.

.

.

.

.
� �
�

∑
�

 and F ′T

0
0

.

.

.
0
1

 =

�
�

.

.

.
�
�

Intro to AD - Narayanan/Utke - July/2013 71

Adol-C sparsity
sparsity pattern detection (needs ColPack & config flag, ... suggested for
homework)

� safe (conservatively correct) and tight mode, think
P(max(a,b))=P(a)|P(b) vs. P(max(a,b))=P(a)

if max(a,b)==a

� propagation of unsigned longs

� forward or reverse

� convoluted example code in
examples/additional examples/sparse/jacpatexam.cpp

� e.g. choice -4 with an arrow-like structure (non-negative numbers
indicate the use of a test tape)

� possibility of collecting entries into blocks of rows and columns for
(cheaper) block wise propagation using jac pat

� -1: contiguous blocks
� -2: non-contiguous blocks
� -3: one block per variable (as in -4)

� see also User Guide
Intro to AD - Narayanan/Utke - July/2013 72

Adol-C dependencies

� example code in examples/odexam.cpp

� rhs IR3 7→ IR3

yprime[0] = -sin(y[2]) + 1.0e8*y[2]*(1.0-1.0/y[0]);

yprime[1] = -10.0*y[0] + 3.0e7*y[2]*(1-y[1]);

yprime[2] = -yprime[0] - yprime[1];

� uses active vector class adoublev (there is also an active matrix class

adboublem and along for active subscripting, see

examples/gaussexam.cpp)

� forode/accode: generate Taylor coefficients and Jacobians for
x′(t) = F (x(t)), see User Guide pp. 66

� nonzero pattern:
3 −1 4
1 2 2
3 2 4

4 = transcend , 3 = rational , 2 = polynomial , 1 = linear , 0 = zero

negative k indicate that entries of all dxj/dx0 with j < −k vanish

Intro to AD - Narayanan/Utke - July/2013 73

partial separability

� reverse mode yields cheap gradient ... at a considerable cost.

� forward takes O(n) but sparse Hessian indicates

f(x) =
∑
i

aifi(xi) + bi

where

xi ∈ Di b D 3 x so that ∇fi ∈ IRni , ni � n

� use compressed forward propagation

� research: identify linear sections

... more general question - how to preserve structure

Intro to AD - Narayanan/Utke - July/2013 74

sidebar: preaccumulation & propagation I

� propagation = overall mode forward or reverse

� preaccumulation = local application of chain rule (view as graph
operation)

� example: source code ⇒ ssa form ⇒ computational graph (DAG)

t1 = x(1) + x(2)
t2 = t1 + sin(x(2))
y(1) = cos(t1 ∗ t2)
y(2) = −sqrt(t2)

⇒

v1 = v−1 + v0; v2 = sin(v0);
v3 = v1 + v2; v4 = v1 ∗ v3;
v5 =

√
v3; v6 =

cos(v4); v7 = −v5

⇒ 41c
c53

c32

c31

43c

0

21

3

54

6 7

1−

� chain rule application: multiplication of edge labels along paths &
absorption of parallel edges by addition

� in the graph: elimination of (intermediate) vertices, edges, faces

Intro to AD - Narayanan/Utke - July/2013 75

sidebar: preaccumulation & propagation II

c32

c
+

=
c

4
1

*c
4

3
3

1

c
+

=
c

4
1

*c
4

3
3

1

c
+

=
c

4
1

*c
4

3
3

1

41c 53

c32

31

c53 c53

c32

43c

0

2

3

54

6 7

1−

6 7 6 7 6

4 5 4 5

1 2 1 2

1− 0 1− 0

7

54

33

1 2

0−

31c

c43

1

c c
42

c
51

43
c c

32

31
c*

*

c
53 c

* c
3

2
5

3
5

2
c

=

=

=

51c

c c42

1

elimination elimination elimination
vertex front−edge back−edge

� efficiency measure is operations count (at runtime)

� combinatorial problem (heuristics for optimization)

� problem: granularity ⇒ face elimination

Intro to AD - Narayanan/Utke - July/2013 76

sidebar: preaccumulation & propagation III

1− 1− 1−

4

3

21

5

41

c31

7

c
41

c

0 0

21

3

54

6 7 6 7

54

3

21

0

6

c43

c
4

1 +
=
c

4
3
c

3
1

*
c

c
43

31
c

43

31

c

� granularity is single fused multiply add

� also requires heuristics

� elimination sequence terminates with tripartite dual graph, i.e.
Jacobian

Intro to AD - Narayanan/Utke - July/2013 77

sidebar: preaccumulation & propagation IV

have preaccumulated local Jacobians;

given the J i, i = 1, . . . , k we want to do:

� forward: (Jk ◦ . . . ◦ (J1 ◦ ẋ) . . .), or

� reverse: (. . . (ȳT ◦ Jk) ◦ . . . ◦ J1)

the total cost:

� function evaluation + local partials (fixed)

� preaccumulation (NP-hard, varying with heuristic)
� propagation (fixed for a given preaccumulation)

� for simplicity: one saxpy per non-unit J i element
� potential for n-ary saxpys (generated)

What – other than the preaccumulation heuristic - can vary?

Intro to AD - Narayanan/Utke - July/2013 78

scarcity
observation: Jacobian accumulation can obscure sparse / low rank
dependencies

example: consider f(x) = (D + axT)x with an intermediate
variable z = xTx that has ∂z/∂xi = 2xi

z
eliminate z

=⇒

now we have n2 variable edge labels vs. n variable and 2n
constant ones

� want: “minimal” representation

� scarcity: discrepancy of nm vs dimension of the manifold of all
J(x),x ∈ D

� required ops: edge eliminations, reroutings, normalization

� avoid refill, backtrack, randomized heuristics, propagate through
remainder graph

� reachability of a minimal representation. e.g. w/o algebraic
dependencies?

� cheap propagation through remainder dual graph?

Intro to AD - Narayanan/Utke - July/2013 79

example

DAG with unit/constant edges

HEX86aea20

FLUX1_20 k=2 d

HEX8744238

FLUX2_21 k=2 d

HEX8746d18

FLUX3_22 k=2 d

HEX874af40

FLUX4_23 k=2 d

HEX874f100

FLUX5_24 k=2 d

HEX87532c0

HEX86ad840

HEX86ad750

HEX86ad5e8

NRM1_1 k=2 i

HEX86ad4f8

HEX86ad660

NRM2_2 k=2 i

HEX86ad570

HEX86ad7c8

NRM3_3 k=2 i

HEX86ad6d8

HEX86af430 HEX86afe28

HEX86b0820

HEX86e0168HEX86e3918 HEX86e52c8HEX8700458

HEX870ae28

HEX870b080 HEX8712c18 HEX8719ec8

HEX8728e50HEX8735f30 HEX87399e8HEX873db30

HEX87404a8HEX874abf8

NRM1_1 k=2 i

HEX86af3b8

HEX86e0258HEX86e1d88 HEX86e53b8HEX8700548HEX870ad38

HEX87126f0

HEX8712948 HEX871a4e0

HEX8729030HEX8736200 HEX8739bc8HEX873d680

HEX8740598 HEX874edb8

NRM2_2 k=2 i

HEX86afdb0

HEX86e0438 HEX86e1e78HEX86e3828HEX8700728 HEX870b350HEX8712600

HEX8719fb8

HEX871a210

HEX8729210HEX8735d50 HEX8739e98 HEX873d860

HEX8740778HEX8752f78

NRM3_3 k=2 i

HEX86b07a8

HEX86b57e0 HEX86ce668 HEX86d0190HEX86d1cb8

HEX86d3730

HEX86b5080

HEX86b5008

HEX86b4f90

PRIMR2_10 k=2 i

HEX86b4ea0

PRIML2_5 k=2 i

HEX86b4f18

HEX86ce758 HEX86d0280HEX86d1da8

HEX86d3820

HEX86c8620 HEX86edba0

HEX86bcc60

HEX86bcb70

HEX86bca08

PRIML3_6 k=2 i

HEX86bc918

HEX86bca80

PRIML4_7 k=2 i

HEX86bc990

HEX86bcbe8

PRIML5_8 k=2 i

HEX86bcaf8

HEX86cccb8HEX86f1668

HEX86c4010

HEX86c3f20

HEX86c3db8

PRIMR3_11 k=2 i

HEX86c3cc8

HEX86c3e30

PRIMR4_12 k=2 i

HEX86c3d40

HEX86c3f98

PRIMR5_13 k=2 i

HEX86c3ea8

HEX86d36b8

HEX86c8698

HEX86c8530

PRIML1_4 k=2 i

HEX86c8440HEX86c84b8

GAMMA_14 k=2 i

HEX86c8350

GM1INV_16 k=2 i

HEX86c83c8

PRIML2_5 k=2 i

HEX86c85a8

HEX86d37a8

HEX86ccd30

HEX86ccbc8

PRIMR1_9 k=2 i

HEX86ccad8HEX86ccb50

GAMMA_14 k=2 i

HEX86cc9e8

GM1INV_16 k=2 i

HEX86cca60

PRIMR2_10 k=2 i

HEX86ccc40 HEX86da8e8

HEX86e01e0

HEX86e38a0

HEX86e5430

HEX86f8830

HEX8735e40

HEX86ce7d0

PRIML3_6 k=2 i

HEX86ce5f0

HEX86ce848

PRIMR3_11 k=2 i

HEX86ce6e0

HEX86da960

HEX86e02d0

HEX86e1ef0

HEX86e5340

HEX86f8920

HEX8739ad8

HEX86d02f8

PRIML4_7 k=2 i

HEX86d0118

HEX86d0370

PRIMR4_12 k=2 i

HEX86d0208

HEX86daac8

HEX86e04b0

HEX86e1e00HEX86e3990 HEX86f8b00

HEX873d770

HEX86d1e20

PRIML5_8 k=2 i

HEX86d1c40

HEX86d1e98

PRIMR5_13 k=2 i

HEX86d1d30

HEX86dc938

HEX86d3898HEX86d3910

HEX86dc9b0

HEX86fd980

HEX8731ba0

HEX86dac30

HEX86dab40

HEX86da9d8 HEX86daa50

HEX86dabb8

HEX86dd928

GM1_15 k=2 i

HEX86dca28 HEX86dcaa0

HEX86e5ce0 HEX86e65c8

HEX86fd890HEX870adb0HEX8712678 HEX8719f40

HEX8728d60

HEX8731c90

HEX86e5c68

HEX86e5e08

HEX86e6640HEX87038f8 HEX871d708

HEX8731e70

HEX86e0528

HEX86e0348 HEX86e03c0

HEX86e05a0

HEX870af18

HEX8732140

HEX86e1f68

HEX86e1fe0

HEX87127e0

HEX8732320

HEX86e3a08

HEX86e3a80

HEX871a0a8

HEX8732500

HEX86e54a8 HEX86e5520

HEX86e6768

HEX86e85f0

HEX86e69a8

HEX86ebfa8

HEX86e6870

HEX86ea2d0

HEX86e8668 HEX86ea348

HEX86ec020

HEX871ec20

HEX86e86e0

HEX8723ab8

HEX86ea3c0

HEX871ffc8 HEX8721370 HEX8722718

HEX86ec098

HEX86f3e40 HEX8743fe0

HEX86edc18

PRIML1_4 k=2 i

HEX86eda38

GM1INV_16 k=2 i

HEX86edab0

HEX86edc90

PRIML2_5 k=2 i

HEX86edb28

HEX86f4f40

HEX874ac70

PRIML2_5 k=2 i

HEX86ee610

PRIML3_6 k=2 i

HEX86ee688

HEX86f5768

HEX874ee30

PRIML2_5 k=2 i

HEX86ef068

PRIML4_7 k=2 i

HEX86ef0e0

HEX86f5f90

HEX8752ff0

PRIML2_5 k=2 i

HEX86efac8

PRIML5_8 k=2 i

HEX86efb40 HEX86f3dc8

HEX86f16e0

PRIMR1_9 k=2 i

HEX86f1500

GM1INV_16 k=2 i

HEX86f1578

HEX86f1758

PRIMR2_10 k=2 i

HEX86f15f0

HEX86f4ec8

PRIMR2_10 k=2 i

HEX86f20e0

PRIMR3_11 k=2 i

HEX86f2158

HEX86f56f0

PRIMR2_10 k=2 i

HEX86f2b38

PRIMR4_12 k=2 i

HEX86f2bb0

HEX86f5f18

PRIMR2_10 k=2 i

HEX86f3590

PRIMR5_13 k=2 i

HEX86f3608

HEX86fd9f8 HEX86fd908

HEX8703880

HEX870af90HEX8712858 HEX871a120

HEX871d690

PRIMR2_10 k=2 i

HEX86f4690

PRIML2_5 k=2 i

HEX86f4708 HEX86f87b8

HEX87003e0

HEX8712588

HEX871a468

HEX86f88a8

HEX87004d0

HEX870b2d8

HEX8719e50

HEX86f8a88

HEX87006b0

HEX870acc0HEX8712ba0

HEX86fdb60

HEX86f8b78

HEX86f8998HEX86f8a10

HEX86f8bf0

HEX8703970HEX870b0f8 HEX87129c0 HEX871a288 HEX871d780

HEX86fdbd8

GM1_15 k=2 i

HEX86fd818

HEX86fdc50

HEX86fdae8

HEX86fda70

HEX8703ad8 HEX871d870

HEX87007a0

HEX87005c0 HEX8700638

HEX8700818

HEX871ec98

HEX8703b50

HEX8703a60

HEX87039e8

HEX8720040

HEX870b4b8

HEX870b530

HEX870b3c8

HEX870b1e8

HEX870b008

HEX870aea0

HEX870b260

HEX870b170

HEX870b440

HEX87213e8

HEX8712d80

HEX8712df8

HEX8712c90

HEX8712ab0

HEX87128d0

HEX8712768

HEX8712b28

HEX8712a38

HEX8712d08

HEX8722790

HEX871a648

HEX871a6c0

HEX871a558

HEX871a378

HEX871a198

HEX871a030

HEX871a3f0

HEX871a300

HEX871a5d0

HEX8723b30

HEX871d960

HEX871d8e8

HEX871d7f8

HEX87242d8HEX8724b00

HEX8728dd8 HEX87320c8HEX8739e20HEX873d608 HEX8728fb8 HEX87322a8HEX8735cd8HEX873dab8 HEX8729198 HEX8732488HEX8736188 HEX8739970

HEX8724350HEX8724b78

HEX8728ce8 HEX8731d08HEX8731df8HEX8735eb8 HEX8739b50 HEX873d7e8

HEX8731b28HEX8732718 HEX8735dc8 HEX8739a60HEX873d6f8

HEX8729288

HEX87290a8

HEX8728ec8HEX8728f40

HEX8729120

HEX8729300

HEX8744148

HEX8732578

HEX8732398

HEX87321b8

HEX8731fd8

HEX8732050

HEX8731ee8

HEX8731d80

GM1INV_16 k=2 i

HEX8731c18

HEX8731f60

HEX8732230

HEX8732410

HEX87325f0

HEX8746c28

HEX874ae50

HEX8736278

HEX8736098

HEX8736110

HEX8735fa8

HEX8736020

HEX87362f0

HEX874f010

HEX8739f10

HEX8739d30

HEX8739da8

HEX8739c40

HEX8739cb8

HEX8739f88

HEX87531d0

HEX873dba8

HEX873d9c8

HEX873da40

HEX873d8d8

HEX873d950

HEX873dc20

HEX8744058HEX8746bb0HEX874ace8 HEX874eea8HEX8753068

HEX87407f0

HEX8740610

PRIML3_6 k=2 i

HEX8740430

HEX8740688

PRIML4_7 k=2 i

HEX8740520

HEX8740868

PRIML5_8 k=2 i

HEX8740700

HEX87442b0

HEX87441c0

HEX87440d0

PRIML1_4 k=2 i

HEX8743f68

HEX8746d90

HEX8746ca0

PRIML2_5 k=2 i

HEX8746b38

HEX874afb8

HEX874aec8

HEX874ad60

PRIML1_4 k=2 i

HEX874ab80

HEX874add8

HEX874f178

HEX874f088

HEX874ef20

PRIML1_4 k=2 i

HEX874ed40

HEX874ef98

HEX8753338

HEX8753248

HEX87530e0

PRIML1_4 k=2 i

HEX8752f00

HEX8753158

Intro to AD - Narayanan/Utke - July/2013 80

scarcity heuristics - example behavior

non-unit edge count over edge elimination step; variation via
avoiding refill:

 180

 190

 200

 210

 220

 230

 240

 250

 260

 270

 280

 0 100 200 300 400 500 600 700 800

at minimum 26 reroutings performed; further post-elimination
reduction via 8 normalizations
Note: relies heavily on precise data dependency analysis ⇐ coding
style (!)
similar concerns as with sparsity: (local) automatic improvement
observed up to factor 2 but application-level exploitation is desired.

Intro to AD - Narayanan/Utke - July/2013 81

	outline
	motivation
	basics & examples
	simple forward
	application areas
	operator overloading
	Rapsodia and simple example
	ADIC and simple example
	simple reverse
	Adol-C and simple example
	OpenAD and simple example

	choices
	AD tool implementation choices
	forward vs reverse

	sparsity, partial separability
	Differentiability/Nonsmoothness
	origins
	differentiability
	FD verification problem
	directional derivatives
	educated guesses on ties
	case distinction
	Adol-c classification
	OpenAD tracing

	Checkpointing/Reversal Schemes
	basics
	split mode
	joint mode
	Example: Shallow Water
	OpenAD: templates for reversal schemes

	Big Applications
	basic concerns
	ADIC example
	MITgcm
	ISSM
	coding with AD in mind

	Revolve
	External libraries
	Higher-order derivatives
	recursion
	implementation
	interpolation
	tools

	Q&A
	Appendix
	sparse forward
	sparse reverse
	Adol-C: sparsity detection etc.
	Partial Separability
	scarcity

